Search results
Results from the WOW.Com Content Network
Logistic regression is used in various fields, including machine learning, most medical fields, and social sciences. For example, the Trauma and Injury Severity Score (), which is widely used to predict mortality in injured patients, was originally developed by Boyd et al. using logistic regression. [6]
Multinomial logistic regression is known by a variety of other names, including polytomous LR, [2] [3] multiclass LR, softmax regression, multinomial logit (mlogit), the maximum entropy (MaxEnt) classifier, and the conditional maximum entropy model.
[2] [3] [4] It has an integrated spreadsheet for data input and can import files in several formats (Excel, SPSS, CSV, ...). MedCalc includes basic parametric and non-parametric statistical procedures and graphs such as descriptive statistics , ANOVA , Mann–Whitney test , Wilcoxon test , χ 2 test , correlation , linear as well as non-linear ...
IRLS is used to find the maximum likelihood estimates of a generalized linear model, and in robust regression to find an M-estimator, as a way of mitigating the influence of outliers in an otherwise normally-distributed data set, for example, by minimizing the least absolute errors rather than the least square errors.
Consider a set of data points, (,), (,), …, (,), and a curve (model function) ^ = (,), that in addition to the variable also depends on parameters, = (,, …,), with . It is desired to find the vector of parameters such that the curve fits best the given data in the least squares sense, that is, the sum of squares = = is minimized, where the residuals (in-sample prediction errors) r i are ...
Thus, for example, MARS models can incorporate logistic regression to predict probabilities. Non-linear regression is used when the underlying form of the function is known and regression is used only to estimate the parameters of that function. MARS, on the other hand, estimates the functions themselves, albeit with severe constraints on the ...
In statistics, the ordered logit model or proportional odds logistic regression is an ordinal regression model—that is, a regression model for ordinal dependent variables—first considered by Peter McCullagh. [1]
GLMs essentially cover one-parameter models from the classical exponential family, and include 3 of the most important statistical regression models: the linear model, Poisson regression for counts, and logistic regression for binary responses. However, the exponential family is far too limiting for regular data analysis.