enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Biot–Savart law - Wikipedia

    en.wikipedia.org/wiki/BiotSavart_law

    The BiotSavart law [4]: Sec 5-2-1 is used for computing the resultant magnetic flux density B at position r in 3D-space generated by a filamentary current I (for example due to a wire). A steady (or stationary) current is a continual flow of charges which does not change with time and the charge neither accumulates nor depletes at any point.

  3. Retarded potential - Wikipedia

    en.wikipedia.org/wiki/Retarded_potential

    Position vectors r and r′ used in the calculation. The starting point is Maxwell's equations in the potential formulation using the Lorenz gauge: =, = where φ(r, t) is the electric potential and A(r, t) is the magnetic vector potential, for an arbitrary source of charge density ρ(r, t) and current density J(r, t), and is the D'Alembert operator. [2]

  4. Jefimenko's equations - Wikipedia

    en.wikipedia.org/wiki/Jefimenko's_equations

    In electromagnetism, Jefimenko's equations (named after Oleg D. Jefimenko) give the electric field and magnetic field due to a distribution of electric charges and electric current in space, that takes into account the propagation delay (retarded time) of the fields due to the finite speed of light and relativistic effects.

  5. Scientific law - Wikipedia

    en.wikipedia.org/wiki/Scientific_law

    Coulomb's law can be found from Gauss's Law (electrostatic form) and the BiotSavart law can be deduced from Ampere's Law (magnetostatic form). Lenz's law and Faraday's law can be incorporated into the Maxwell–Faraday equation. Nonetheless they are still very effective for simple calculations. Lenz's law; Coulomb's law; BiotSavart law ...

  6. Magnetostatics - Wikipedia

    en.wikipedia.org/wiki/Magnetostatics

    Magnetostatics is the study of magnetic fields in systems where the currents are steady (not changing with time). It is the magnetic analogue of electrostatics, where the charges are stationary.

  7. Relativistic electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Relativistic_electromagnetism

    Alternatively, introductory treatments of magnetism introduce the BiotSavart law, which describes the magnetic field associated with an electric current. An observer at rest with respect to a system of static, free charges will see no magnetic field.

  8. Magnetic field - Wikipedia

    en.wikipedia.org/wiki/Magnetic_field

    The magnetic field generated by a steady current I (a constant flow of electric charges, in which charge neither accumulates nor is depleted at any point) [note 8] is described by the BiotSavart law: [21]: 224 = ^, where the integral sums over the wire length where vector dâ„“ is the vector line element with direction in the same sense as ...

  9. List of eponymous laws - Wikipedia

    en.wikipedia.org/wiki/List_of_eponymous_laws

    BiotSavart law describes the magnetic field set up by a steady current density. Named for Jean-Baptiste Biot and Félix Savart . Birch's law , in geophysics , establishes a linear relation of the compressional wave velocity of rocks and minerals of a constant average atomic weight.