enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Count-distinct problem - Wikipedia

    en.wikipedia.org/wiki/Count-distinct_problem

    Thus, the existence of duplicates does not affect the value of the extreme order statistics. There are other estimation techniques other than min/max sketches. The first paper on count-distinct estimation [7] describes the Flajolet–Martin algorithm, a bit pattern sketch. In this case, the elements are hashed into a bit vector and the sketch ...

  3. Aggregate function - Wikipedia

    en.wikipedia.org/wiki/Aggregate_function

    In order to calculate the average and standard deviation from aggregate data, it is necessary to have available for each group: the total of values (Σx i = SUM(x)), the number of values (N=COUNT(x)) and the total of squares of the values (Σx i 2 =SUM(x 2)) of each groups. [8]

  4. Pivot table - Wikipedia

    en.wikipedia.org/wiki/Pivot_table

    Column labels are used to apply a filter to one or more columns that have to be shown in the pivot table. For instance if the "Salesperson" field is dragged to this area, then the table constructed will have values from the column "Sales Person", i.e., one will have a number of columns equal to the number of "Salesperson". There will also be ...

  5. Flajolet–Martin algorithm - Wikipedia

    en.wikipedia.org/wiki/Flajolet–Martin_algorithm

    A common solution is to combine both the mean and the median: Create hash functions and split them into distinct groups (each of size ). Within each group use the mean for aggregating together the l {\displaystyle l} results, and finally take the median of the k {\displaystyle k} group estimates as the final estimate.

  6. HyperLogLog - Wikipedia

    en.wikipedia.org/wiki/HyperLogLog

    HyperLogLog is an algorithm for the count-distinct problem, approximating the number of distinct elements in a multiset. [1] Calculating the exact cardinality of the distinct elements of a multiset requires an amount of memory proportional to the cardinality, which is impractical for very large data sets. Probabilistic cardinality estimators ...

  7. Spreadsheet - Wikipedia

    en.wikipedia.org/wiki/Spreadsheet

    In this example, only the values in the A column are entered (10, 20, 30), and the remainder of cells are formulas. Formulas in the B column multiply values from the A column using relative references, and the formula in B4 uses the SUM() function to find the sum of values in the B1:B3 range.

  8. Count sketch - Wikipedia

    en.wikipedia.org/wiki/Count_Sketch

    Count sketch is a type of dimensionality reduction that is particularly efficient in statistics, machine learning and algorithms. [1] [2] It was invented by Moses Charikar, Kevin Chen and Martin Farach-Colton [3] in an effort to speed up the AMS Sketch by Alon, Matias and Szegedy for approximating the frequency moments of streams [4] (these calculations require counting of the number of ...

  9. Counting sort - Wikipedia

    en.wikipedia.org/wiki/Counting_sort

    Here input is the input array to be sorted, key returns the numeric key of each item in the input array, count is an auxiliary array used first to store the numbers of items with each key, and then (after the second loop) to store the positions where items with each key should be placed, k is the maximum value of the non-negative key values and ...