Search results
Results from the WOW.Com Content Network
In number theory, Ramanujan's sum, usually denoted c q (n), is a function of two positive integer variables q and n defined by the formula = ...
Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.
In mathematics, a character sum is a sum () of values of a Dirichlet character χ modulo N, taken over a given range of values of n.Such sums are basic in a number of questions, for example in the distribution of quadratic residues, and in particular in the classical question of finding an upper bound for the least quadratic non-residue modulo N.
Ramanujan summation is a method to isolate the constant term in the Euler–Maclaurin formula for the partial sums of a series. For a function f , the classical Ramanujan sum of the series ∑ k = 1 ∞ f ( k ) {\displaystyle \textstyle \sum _{k=1}^{\infty }f(k)} is defined as
c q (n), Ramanujan's sum, is the sum of the nth powers of the primitive qth roots of unity: = (,) =. Even though it is defined as a sum of complex numbers (irrational for most values of q ), it is an integer.
Divisor function σ 0 (n) up to n = 250 Sigma function σ 1 (n) up to n = 250 Sum of the squares of divisors, σ 2 (n), up to n = 250 Sum of cubes of divisors, σ 3 (n) up to n = 250. In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer.
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
In mathematics, the Rogers–Ramanujan identities are two identities related to basic hypergeometric series and integer partitions. The identities were first discovered and proved by Leonard James Rogers ( 1894 ), and were subsequently rediscovered (without a proof) by Srinivasa Ramanujan some time before 1913.