Search results
Results from the WOW.Com Content Network
The trivial case of the angular momentum of a body in an orbit is given by = where is the mass of the orbiting object, is the orbit's frequency and is the orbit's radius.. The angular momentum of a uniform rigid sphere rotating around its axis, instead, is given by = where is the sphere's mass, is the frequency of rotation and is the sphere's radius.
The angular momentum of the very large number of charged particles that make up a current therefore is: = (), where ρ is the mass density of the moving particles. By convention the direction of the cross product is given by the right-hand rule .
The total angular momentum of light consists of two components, both of which act in a different way on a massive colloidal particle inserted into the beam. The spin component causes the particle to spin around its axis, while the other component, known as orbital angular momentum (OAM), causes the particle to rotate around the axis of the beam.
Angular momenta of a classical object. Left: intrinsic "spin" angular momentum S is really orbital angular momentum of the object at every point, right: extrinsic orbital angular momentum L about an axis, top: the moment of inertia tensor I and angular velocity ω (L is not always parallel to ω) [6] bottom: momentum p and its radial position r ...
For reference and background, two closely related forms of angular momentum are given. In classical mechanics, the orbital angular momentum of a particle with instantaneous three-dimensional position vector x = (x, y, z) and momentum vector p = (p x, p y, p z), is defined as the axial vector = which has three components, that are systematically given by cyclic permutations of Cartesian ...
In celestial mechanics, the specific relative angular momentum (often denoted or ) of a body is the angular momentum of that body divided by its mass. [1] In the case of two orbiting bodies it is the vector product of their relative position and relative linear momentum , divided by the mass of the body in question.
Euler's second law states that the rate of change of angular momentum L about a point that is fixed in an inertial reference frame (often the center of mass of the body), is equal to the sum of the external moments of force acting on that body M about that point: [1] [4] [5]
where is the mass of the rigid body; ¯ is the velocity of the center of mass of the rigid body, as viewed by an observer fixed in an inertial frame N; ¯ is the angular momentum of the rigid body about the center of mass, also taken in the inertial frame N; and is the angular velocity of the rigid body R relative to the inertial frame N. [3]