Search results
Results from the WOW.Com Content Network
In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used in the Darcy–Weisbach equation, for the description of friction losses in pipe flow as well as open-channel flow.
If the formula for laminar flow is f = 16 / Re , it is the Fanning factor f, and if the formula for laminar flow is f D = 64 / Re , it is the Darcy–Weisbach factor f D. Which friction factor is plotted in a Moody diagram may be determined by inspection if the publisher did not include the formula described above: Observe the ...
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.
Under turbulent flow, the friction loss is found to be roughly proportional to the square of the flow velocity and inversely proportional to the pipe diameter, that is, the friction loss follows the phenomenological Darcy–Weisbach equation in which the hydraulic slope S can be expressed [9]
The Swamee–Aggarwal equation is used to solve directly for the Darcy–Weisbach friction factor f for laminar flow of Bingham plastic fluids. [8] It is an approximation of the implicit Buckingham–Reiner equation, but the discrepancy from experimental data is well within the accuracy of the data. The Swamee–Aggarwal equation is given by:
The Moody diagram, which describes the Darcy–Weisbach friction factor f as a function of the Reynolds number and relative pipe roughness. Pressure drops [ 28 ] seen for fully developed flow of fluids through pipes can be predicted using the Moody diagram which plots the Darcy–Weisbach friction factor f against Reynolds number Re and ...
Once the friction factors of the pipes are obtained (or calculated from pipe friction laws such as the Darcy-Weisbach equation), we can consider how to calculate the flow rates and head losses on the network. Generally the head losses (potential differences) at each node are neglected, and a solution is sought for the steady-state flows on the ...
Darcy's law, which describes the flow of a fluid through porous material; Darcy (unit), a unit of permeability of fluids in porous material; Darcy friction factor in the field of fluid mechanics; Darcy–Weisbach equation used in hydraulics for calculation of the head loss due to friction