Search results
Results from the WOW.Com Content Network
Food chain in a Swedish lake. Osprey feed on northern pike, which in turn feed on perch which eat bleak which eat crustaceans.. A food chain is a linear network of links in a food web, often starting with an autotroph (such as grass or algae), also called a producer, and typically ending at an apex predator (such as grizzly bears or killer whales), detritivore (such as earthworms and woodlice ...
In order to more efficiently show the quantity of organisms at each trophic level, these food chains are then organized into trophic pyramids. [1] The arrows in the food chain show that the energy flow is unidirectional, with the head of an arrow indicating the direction of energy flow; energy is lost as heat at each step along the way. [2] [3]
A freshwater aquatic food web. The blue arrows show a complete food chain (algae → daphnia → gizzard shad → largemouth bass → great blue heron). A food web is the natural interconnection of food chains and a graphical representation of what-eats-what in an ecological community.
A diagram that sets out the intricate network of intersecting and overlapping food chains for an ecosystem is called its food web. [6] Decomposers are often left off food webs, but if included, they mark the end of a food chain. [6] Thus food chains start with primary producers and end with decay and decomposers.
A simplified food web illustrating a three-trophic food chain (producers-herbivores-carnivores) linked to decomposers. The movement of mineral nutrients through the food chain, into the mineral nutrient pool, and back into the trophic system illustrates ecological recycling. The movement of energy, in contrast, is unidirectional and noncyclic.
Within an ecological food chain, consumers are categorized into primary consumers, secondary consumers, and tertiary consumers. [3] Primary consumers are herbivores, feeding on plants or algae. Caterpillars, insects, grasshoppers, termites and hummingbirds are all examples of primary consumers because they only eat autotrophs (plants).
An iso-osmolar solution can be hypotonic if the solute is able to penetrate the cell membrane. For example, an iso-osmolar urea solution is hypotonic to red blood cells, causing their lysis. This is due to urea entering the cell down its concentration gradient, followed by water.
A plant cell in hypotonic solution will absorb water by endosmosis, so that the increased volume of water in the cell will increase pressure, making the protoplasm push against the cell wall, a condition known as turgor. Turgor makes plant cells push against each other in the same way and is the main line method of support in non-woody plant ...