Search results
Results from the WOW.Com Content Network
It is a dimensionless quantity with dimension of / and dimensionless unit of moles per mole (mol/mol or mol ⋅ mol-1) or simply 1; metric prefixes may also be used (e.g., nmol/mol for 10-9). [5] When expressed in percent , it is known as the mole percent or molar percentage (unit symbol %, sometimes "mol%", equivalent to cmol/mol for 10 -2 ).
Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution. [2] For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase : [3]
This page lists examples of the orders of magnitude of molar concentration. Source values are parenthesized where unit conversions were performed. M denotes the non-SI unit molar: 1 M = 1 mol/L = 10 −3 mol/m 3.
For convenience in avoiding conversions in the imperial (or US customary units), some engineers adopted the pound-mole (notation lb-mol or lbmol), which is defined as the number of entities in 12 lb of 12 C. One lb-mol is equal to 453.592 37 g‑mol, [6] which is the same numerical value as the number of grams in an international avoirdupois pound.
To convert from / to /, multiply by 100. To convert from / ... 1 dm 3 /mol = 1 L/mol = 1 m 3 /kmol = 0.001 m 3 /mol (where kmol is kilomoles = 1000 moles) References
The molar ratio allows for conversion between moles of one substance and moles of another. For example, in the reaction 2 CH 3 OH + 3 O 2 → 2 CO 2 + 4 H 2 O. the amount of water that will be produced by the combustion of 0.27 moles of CH 3 OH is obtained using the molar ratio between CH 3 OH and H 2 O of 2 to 4.
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
By this definition, the number of equivalents of a given ion in a solution is equal to the number of moles of that ion multiplied by its valence. For example, consider a solution of 1 mole of NaCl and 1 mole of CaCl 2. The solution has 1 mole or 1 equiv Na +, 1 mole or 2 equiv Ca 2+, and 3 mole or 3 equiv Cl −.