Search results
Results from the WOW.Com Content Network
The fluid ounce is distinct from the (international avoirdupois) ounce as a unit of weight or mass, although it is sometimes referred to simply as an "ounce" where context makes the meaning clear (e.g., "ounces in a bottle"). A volume of pure water measuring one imperial fluid ounce has a mass of almost exactly one ounce.
One litre of water has a mass of almost exactly one kilogram when measured at its maximal density, which occurs at about 4 °C. It follows, therefore, that 1000th of a litre, known as one millilitre (1 mL), of water has a mass of about 1 g; 1000 litres of water has a mass of about 1000 kg (1 tonne or megagram). This relationship holds because ...
The recommended daily amount of drinking water for humans varies. [1] It depends on activity, age, health, and environment.In the United States, the Adequate Intake for total water, based on median intakes, is 4.0 litres (141 imp fl oz; 135 US fl oz) per day for males older than 18, and 3.0 litres (106 imp fl oz; 101 US fl oz) per day for females over 18; it assumes about 80% from drink and 20 ...
The Imperial gallon was based on the concept that an Imperial fluid ounce of water would have a mass of one Avoirdupois ounce, and indeed 1 g/cm 3 ≈ 1.00224129 ounces per Imperial fluid ounce = 10.0224129 pounds per Imperial gallon. The density of precious metals could conceivably be based on Troy ounces and pounds, a possible cause of confusion.
DNA sequence of length 4.6 Mbp, the weight of the E. coli genome [27] 10 −17 ~1 × 10 −17 kg Vaccinia virus, a large virus [28] 1.1 × 10 −17 kg Mass equivalent of 1 joule [29] 10 −16: 3 × 10 −16 kg Prochlorococcus cyanobacteria, the smallest (and possibly most plentiful) [30] photosynthetic organism on Earth [31] [32] 10 −15 ...
Note that the especially high molar values, as for paraffin, gasoline, water and ammonia, result from calculating specific heats in terms of moles of molecules. If specific heat is expressed per mole of atoms for these substances, none of the constant-volume values exceed, to any large extent, the theoretical Dulong–Petit limit of 25 J⋅mol ...
To obtain 4 liters using 3-liter and 5-liter jugs, we want to reach the point (4, 0). From the point (4, 0), there are only two reversible actions: filling the empty 3-liter jug to full from the tap (4,3), or transferring 1 liter of water from the 5-liter jug to the 3-liter jug (1,3). Therefore, there are only two solutions to the problem:
An ounce-force is 1 ⁄ 16 of a pound-force, or about 0.2780139 newtons. It is defined as the force exerted by a mass of one avoirdupois ounce under standard gravity (at the surface of the earth, its weight). The "ounce" in "ounce-force" is equivalent to an avoirdupois ounce; ounce-force is a measurement of force using avoirdupois ounces.