Search results
Results from the WOW.Com Content Network
The normalized compression distance has been used to fully automatically reconstruct language and phylogenetic trees. [2] [3] It can also be used for new applications of general clustering and classification of natural data in arbitrary domains, [3] for clustering of heterogeneous data, [3] and for anomaly detection across domains. [5]
The most widely known string metric is a rudimentary one called the Levenshtein distance (also known as edit distance). [2] It operates between two input strings, returning a number equivalent to the number of substitutions and deletions needed in order to transform one input string into another.
The publications of the Institute of Electrical and Electronics Engineers (IEEE) constitute around 30% of the world literature in the electrical and electronics engineering and computer science fields, [citation needed] publishing well over 100 peer-reviewed journals. [1]
Clustering or Cluster analysis is a data mining technique that is used to discover patterns in data by grouping similar objects together. It involves partitioning a set of data points into groups or clusters based on their similarities. One of the fundamental aspects of clustering is how to measure similarity between data points.
In comparison to other distance measures, (e.g. DTW (dynamic time warping) or LCS (longest common subsequence problem)), TWED is a metric. Its computational time complexity is O ( n 2 ) {\displaystyle O(n^{2})} , but can be drastically reduced in some specific situations by using a corridor to reduce the search space.
Most theoretical studies of minimum-distance estimation, and most applications, make use of "distance" measures which underlie already-established goodness of fit tests: the test statistic used in one of these tests is used as the distance measure to be minimised. Below are some examples of statistical tests that have been used for minimum ...
The submodular Bregman divergences subsume a number of discrete distance measures, like the Hamming distance, precision and recall, mutual information and some other set based distance measures (see Iyer & Bilmes, 2012 for more details and properties of the submodular Bregman.) For a list of common matrix Bregman divergences, see Table 15.1 in. [8]
A distance between populations can be interpreted as measuring the distance between two probability distributions and hence they are essentially measures of distances between probability measures. Where statistical distance measures relate to the differences between random variables, these may have statistical dependence, [1] and hence these ...