enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    If G is a tree, replacing the queue of the breadth-first search algorithm with a stack will yield a depth-first search algorithm. For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [7] Another possible ...

  3. Iterative deepening depth-first search - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_depth...

    Iterative deepening depth-first search; Class: Search algorithm: Data structure: Tree, Graph: Worst-case performance (), where is the branching factor and is the depth of the shallowest solution: Worst-case space complexity [1] Optimal: yes (for unweighted graphs)

  4. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    In depth-first search (DFS), the search tree is deepened as much as possible before going to the next sibling. To traverse binary trees with depth-first search, perform the following operations at each node: [3] [4] If the current node is empty then return. Execute the following three operations in a certain order: [5] N: Visit the current node.

  5. Graph traversal - Wikipedia

    en.wikipedia.org/wiki/Graph_traversal

    A depth-first search (DFS) is an algorithm for traversing a finite graph. DFS visits the child vertices before visiting the sibling vertices; that is, it traverses the depth of any particular path before exploring its breadth. A stack (often the program's call stack via recursion) is generally used when implementing the algorithm.

  6. Tarjan's strongly connected components algorithm - Wikipedia

    en.wikipedia.org/wiki/Tarjan's_strongly_connected...

    The basic idea of the algorithm is this: a depth-first search (DFS) begins from an arbitrary start node (and subsequent depth-first searches are conducted on any nodes that have not yet been found). As usual with depth-first search, the search visits every node of the graph exactly once, refusing to revisit any node that has already been visited.

  7. A* search algorithm - Wikipedia

    en.wikipedia.org/wiki/A*_search_algorithm

    Dijkstra's algorithm, as another example of a uniform-cost search algorithm, can be viewed as a special case of A* where ⁠ = ⁠ for all x. [ 12 ] [ 13 ] General depth-first search can be implemented using A* by considering that there is a global counter C initialized with a very large value.

  8. External memory graph traversal - Wikipedia

    en.wikipedia.org/wiki/External_memory_graph...

    Graph traversal is a subroutine in most graph algorithms. The goal of a graph traversal algorithm is to visit (and / or process) every node of a graph. Graph traversal algorithms, like breadth-first search and depth-first search, are analyzed using the von Neumann model, which assumes uniform memory access cost. This view neglects the fact ...

  9. Iterative deepening A* - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_A*

    Iterative deepening A* (IDA*) is a graph traversal and path search algorithm that can find the shortest path between a designated start node and any member of a set of goal nodes in a weighted graph. It is a variant of iterative deepening depth-first search that borrows the idea to use a heuristic function to conservatively estimate the ...