enow.com Web Search

  1. Ad

    related to: how to show differentiability formula in excel sheet with two conditions

Search results

  1. Results from the WOW.Com Content Network
  2. Weak derivative - Wikipedia

    en.wikipedia.org/wiki/Weak_derivative

    If two functions are weak derivatives of the same function, they are equal except on a set with Lebesgue measure zero, i.e., they are equal almost everywhere. If we consider equivalence classes of functions such that two functions are equivalent if they are equal almost everywhere, then the weak derivative is unique.

  3. Weak formulation - Wikipedia

    en.wikipedia.org/wiki/Weak_formulation

    Let be a Banach space, let ′ be the dual space of , let : ′ be a linear map, and let ′.A vector is a solution of the equation = if and only if for all , () = ().A particular choice of is called a test vector (in general) or a test function (if is a function space).

  4. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    At the remaining critical point (0, 0) the second derivative test is insufficient, and one must use higher order tests or other tools to determine the behavior of the function at this point. (In fact, one can show that f takes both positive and negative values in small neighborhoods around (0, 0) and so this point is a saddle point of f.)

  5. Semi-differentiability - Wikipedia

    en.wikipedia.org/wiki/Semi-differentiability

    If a real-valued, differentiable function f, defined on an interval I of the real line, has zero derivative everywhere, then it is constant, as an application of the mean value theorem shows. The assumption of differentiability can be weakened to continuity and one-sided differentiability of f. The version for right differentiable functions is ...

  6. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    A function of a real variable is differentiable at a point of its domain, if its domain contains an open interval containing ⁠ ⁠, and the limit = (+) exists. [2] This means that, for every positive real number ⁠ ⁠, there exists a positive real number such that, for every such that | | < and then (+) is defined, and | (+) | <, where the vertical bars denote the absolute value.

  7. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    Constantin Carathéodory's alternative definition of the differentiability of a function can be used to give an elegant proof of the chain rule. [6] Under this definition, a function f is differentiable at a point a if and only if there is a function q, continuous at a and such that f(x) − f(a) = q(x)(x − a).

  8. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...

  9. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    A differentiable function is smooth (the function is locally well approximated as a linear function at each interior point) and does not contain any break, angle, or cusp. If x 0 is an interior point in the domain of a function f , then f is said to be differentiable at x 0 if the derivative f ′ ( x 0 ) {\displaystyle f'(x_{0})} exists.

  1. Ad

    related to: how to show differentiability formula in excel sheet with two conditions
  1. Related searches how to show differentiability formula in excel sheet with two conditions

    semi differentiability formulawhat is semi differentiability