Search results
Results from the WOW.Com Content Network
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.
This relationship is known as Hooke's law. A geometry-dependent version of the idea [a] was first formulated by Robert Hooke in 1675 as a Latin anagram, "ceiiinosssttuv". He published the answer in 1678: "Ut tensio, sic vis" meaning "As the extension, so the force", [5] [6] a linear relationship commonly referred to as Hooke's law.
Pulling the spring to a greater length causes it to exert a force that brings the spring back toward its equilibrium length. The amount of force can be determined by multiplying the spring constant, characteristic of the spring, by the amount of stretch, also known as Hooke's Law. Another example is of a pendulum.
Expressed in terms of components with respect to a rectangular Cartesian coordinate system, the governing equations of linear elasticity are: [1]. Equation of motion: , + = where the (), subscript is a shorthand for () / and indicates /, = is the Cauchy stress tensor, is the body force density, is the mass density, and is the displacement.
Generally, at constant temperature, the bulk modulus is defined by: = (). The easiest way to get an equation of state linking P and V is to assume that K is constant, that is to say, independent of pressure and deformation of the solid, then we simply find Hooke's law.
The most general linear relation between two second-rank tensors , is = where are the components of a fourth-rank tensor . [1] [note 1] The elasticity tensor is defined as for the case where and are the stress and strain tensors, respectively.
where is the volume fraction of the fibers in the composite (and is the volume fraction of the matrix).. If it is assumed that the composite material behaves as a linear-elastic material, i.e., abiding Hooke's law = for some elastic modulus of the composite and some strain of the composite , then equations 1 and 2 can be combined to give