enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Correspondence (algebraic geometry) - Wikipedia

    en.wikipedia.org/wiki/Correspondence_(algebraic...

    In algebraic geometry, a correspondence between algebraic varieties V and W is a subset R of V×W, that is closed in the Zariski topology.In set theory, a subset of a Cartesian product of two sets is called a binary relation or correspondence; thus, a correspondence here is a relation that is defined by algebraic equations.

  3. Ring theory - Wikipedia

    en.wikipedia.org/wiki/Ring_theory

    Algebraic geometry is in many ways the mirror image of commutative algebra. This correspondence started with Hilbert's Nullstellensatz that establishes a one-to-one correspondence between the points of an algebraic variety, and the maximal ideals of its coordinate ring. This correspondence has been enlarged and systematized for translating (and ...

  4. Lie group–Lie algebra correspondence - Wikipedia

    en.wikipedia.org/wiki/Lie_group–Lie_algebra...

    Suppose G is a closed subgroup of GL(n;C), and thus a Lie group, by the closed subgroups theorem.Then the Lie algebra of G may be computed as [2] [3] ⁡ = {(;)}. For example, one can use the criterion to establish the correspondence for classical compact groups (cf. the table in "compact Lie groups" below.)

  5. Weyl group - Wikipedia

    en.wikipedia.org/wiki/Weyl_group

    Above, the Weyl group was defined as a subgroup of the isometry group of a root system. There are also various definitions of Weyl groups specific to various group-theoretic and geometric contexts (Lie algebra, Lie group, symmetric space, etc.). For each of these ways of defining Weyl groups, it is a (usually nontrivial) theorem that it is a ...

  6. Algebraic variety - Wikipedia

    en.wikipedia.org/wiki/Algebraic_variety

    The twisted cubic is a projective algebraic variety. Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in ...

  7. Nef line bundle - Wikipedia

    en.wikipedia.org/wiki/Nef_line_bundle

    As a result, there is a one-to-one correspondence between the contractions of X and some of the faces of the nef cone of X. [15] (This correspondence can also be formulated dually, in terms of faces of the cone of curves.) Knowing which nef line bundles are semi-ample would determine which faces correspond to contractions.

  8. Correspondence theorem - Wikipedia

    en.wikipedia.org/wiki/Correspondence_theorem

    A proof of the correspondence theorem can be found here. Similar results hold for rings, modules, vector spaces, and algebras. More generally an analogous result that concerns congruence relations instead of normal subgroups holds for any algebraic structure.

  9. Correspondence - Wikipedia

    en.wikipedia.org/wiki/Correspondence

    Correspondence (algebraic geometry), between two algebraic varieties; Corresponding sides and corresponding angles, between two polygons; Correspondence (category theory), the opposite of a profunctor; Correspondence (von Neumann algebra) or bimodule, a type of Hilbert space; Correspondence analysis, a multivariate statistical technique