enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Naive Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Naive_Bayes_classifier

    Abstractly, naive Bayes is a conditional probability model: it assigns probabilities (, …,) for each of the K possible outcomes or classes given a problem instance to be classified, represented by a vector = (, …,) encoding some n features (independent variables).

  3. Multiclass classification - Wikipedia

    en.wikipedia.org/wiki/Multiclass_classification

    Naive Bayes is a successful classifier based upon the principle of maximum a posteriori (MAP). This approach is naturally extensible to the case of having more than two classes, and was shown to perform well in spite of the underlying simplifying assumption of conditional independence .

  4. Generative model - Wikipedia

    en.wikipedia.org/wiki/Generative_model

    naive Bayes classifier and; linear discriminant analysis; discriminative model: logistic regression; In application to classification, one wishes to go from an observation x to a label y (or probability distribution on labels).

  5. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    k-means clustering is a method of vector quantization, originally from signal processing, that aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster.

  6. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    Instead of decision trees, linear models have been proposed and evaluated as base estimators in random forests, in particular multinomial logistic regression and naive Bayes classifiers. [ 37 ] [ 38 ] [ 39 ] In cases that the relationship between the predictors and the target variable is linear, the base learners may have an equally high ...

  7. Bayesian classifier - Wikipedia

    en.wikipedia.org/wiki/Bayesian_classifier

    a Bayes classifier, one that always chooses the class of highest posterior probability in case this posterior distribution is modelled by assuming the observables are independent, it is a naive Bayes classifier

  8. Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Bayes_classifier

    In statistical classification, the Bayes classifier is the classifier having the smallest probability of misclassification of all classifiers using the same set of features. [ 1 ] Definition

  9. Binary Independence Model - Wikipedia

    en.wikipedia.org/wiki/Binary_Independence_Model

    This independence is the "naive" assumption of a Naive Bayes classifier, where properties that imply each other are nonetheless treated as independent for the sake of simplicity. This assumption allows the representation to be treated as an instance of a Vector space model by considering each term as a value of 0 or 1 along a dimension ...