Search results
Results from the WOW.Com Content Network
One-dimensional abstract simplicial complexes are mathematically equivalent to simple undirected graphs: the vertex set of the complex can be viewed as the vertex set of a graph, and the two-element facets of the complex correspond to undirected edges of a graph. In this view, one-element facets of a complex correspond to isolated vertices that ...
The order complex associated to a poset (S, ≤) has the set S as vertices, and the finite chains of (S, ≤) as faces. The poset topology associated to a poset ( S , ≤) is then the Alexandrov topology on the order complex associated to ( S , ≤).
Let Δ be an abstract simplicial complex of dimension d − 1 with f i i-dimensional faces and f −1 = 1. These numbers are arranged into the f-vector of Δ, = (,, …,).An important special case occurs when Δ is the boundary of a d-dimensional convex polytope.
That is, the correct answer in honest Betti numbers is 2, 0, 0. Once more, it is the reduced Betti numbers that work out. With those, we begin with 0, 1, 0. to finish with 1, 0, 0. From these two examples, therefore, Alexander's formulation can be inferred: reduced Betti numbers ~ are related in complements by
In algebraic combinatorics, the Kruskal–Katona theorem gives a complete characterization of the f-vectors of abstract simplicial complexes.It includes as a special case the ErdÅ‘s–Ko–Rado theorem and can be restated in terms of uniform hypergraphs.
For computational issues, it is sometimes easier to assume spaces to be CW-complexes and determine their homology via cellular decomposition, an example is the projective plane : Its construction as a CW-complex needs three cells, whereas its simplicial complex consists of 54 simplices.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In this example, the link can be visualized by cutting off the vertex with a plane; formally, intersecting the tetrahedron with a plane near the vertex – the resulting cross-section is the link. Another example is illustrated below. There is a two-dimensional simplicial complex. At the left, a vertex is marked in yellow.