Search results
Results from the WOW.Com Content Network
In fluid dynamics the Milne-Thomson circle theorem or the circle theorem is a statement giving a new stream function for a fluid flow when a cylinder is placed into that flow. [ 1 ] [ 2 ] It was named after the English mathematician L. M. Milne-Thomson .
Circle through exactly four points given by Schinzel's construction Schinzel proved this theorem by the following construction. If n {\displaystyle n} is an even number, with n = 2 k {\displaystyle n=2k} , then the circle given by the following equation passes through exactly n {\displaystyle n} points: [ 1 ] [ 2 ] ( x − 1 2 ) 2 + y 2 = 1 4 5 ...
Conway's circle theorem as a special case of the generalisation, called "side divider theorem" (Villiers) or "windscreen wiper theorem" (Polster)) Conway's circle is a special case of a more general circle for a triangle that can be obtained as follows: Given any ABC with an arbitrary point P on line AB.
This problem is known as the primitive circle problem, as it involves searching for primitive solutions to the original circle problem. [9] It can be intuitively understood as the question of how many trees within a distance of r are visible in the Euclid's orchard , standing in the origin.
Download as PDF; Printable version; In other projects Wikidata item; ... Pages in category "Theorems about circles" The following 21 pages are in this category, out ...
The second theorem considers five circles in general position passing through a single point M. Each subset of four circles defines a new point P according to the first theorem. Then these five points all lie on a single circle C. The third theorem considers six circles in general position that pass through a single point M. Each subset of five ...
In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ∠ ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved as part of the 31st proposition in the third book of Euclid's Elements. [1]
The three circles theorem follows from the fact that for any real a, the function Re log(z a f(z)) is harmonic between two circles, and therefore takes its maximum value on one of the circles. The theorem follows by choosing the constant a so that this harmonic function has the same maximum value on both circles. The theorem can also be deduced ...