enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bayesian statistics - Wikipedia

    en.wikipedia.org/wiki/Bayesian_statistics

    Exploratory analysis of Bayesian models is an adaptation or extension of the exploratory data analysis approach to the needs and peculiarities of Bayesian modeling. In the words of Persi Diaconis: [16] Exploratory data analysis seeks to reveal structure, or simple descriptions in data. We look at numbers or graphs and try to find patterns.

  3. Bayesian linear regression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_linear_regression

    Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often ...

  4. Andrew Gelman - Wikipedia

    en.wikipedia.org/wiki/Andrew_Gelman

    Andrew Eric Gelman (born February 11, 1965) is an American statistician and professor of statistics and political science at Columbia University. Gelman received bachelor of science degrees in mathematics and in physics from MIT , where he was a National Merit Scholar , in 1986.

  5. Stan (software) - Wikipedia

    en.wikipedia.org/wiki/Stan_(software)

    Stan: A probabilistic programming language for Bayesian inference and optimization, Journal of Educational and Behavioral Statistics. Hoffman, Matthew D., Bob Carpenter, and Andrew Gelman (2012). Stan, scalable software for Bayesian modeling Archived 2015-01-21 at the Wayback Machine, Proceedings of the NIPS Workshop on Probabilistic Programming.

  6. Multilevel regression with poststratification - Wikipedia

    en.wikipedia.org/wiki/Multilevel_regression_with...

    The technique was originally developed by Gelman and T. Little in 1997, [6] building upon ideas of Fay and Herriot [7] and R. Little. [8] It was subsequently expanded on by Park, Gelman, and Bafumi in 2004 and 2006. It was proposed for use in estimating US-state-level voter preference by Lax and Philips in 2009.

  7. Bayesian hierarchical modeling - Wikipedia

    en.wikipedia.org/wiki/Bayesian_hierarchical_modeling

    In decline curve analysis to describe oil or gas production decline curve for multiple wells, observational units are oil or gas wells in a reservoir region, and each well has each own temporal profile of oil or gas production rates (usually, barrels per month). [4] Data structure for the hierarchical modeling retains nested data structure.

  8. Variational Bayesian methods - Wikipedia

    en.wikipedia.org/wiki/Variational_Bayesian_methods

    Variational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning.They are typically used in complex statistical models consisting of observed variables (usually termed "data") as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as ...

  9. Posterior probability - Wikipedia

    en.wikipedia.org/wiki/Posterior_probability

    After the arrival of new information, the current posterior probability may serve as the prior in another round of Bayesian updating. [ 3 ] In the context of Bayesian statistics , the posterior probability distribution usually describes the epistemic uncertainty about statistical parameters conditional on a collection of observed data.