enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bayes' theorem - Wikipedia

    en.wikipedia.org/wiki/Bayes'_theorem

    Bayes' theorem applied to an event space generated by continuous random variables X and Y with known probability distributions. There exists an instance of Bayes' theorem for each point in the domain. In practice, these instances might be parametrized by writing the specified probability densities as a function of x and y.

  3. Bayesian statistics - Wikipedia

    en.wikipedia.org/wiki/Bayesian_statistics

    Bayes' theorem describes the conditional probability of an event based on data as well as prior information or beliefs about the event or conditions related to the event. [3] [4] For example, in Bayesian inference, Bayes' theorem can be used to estimate the parameters of a probability distribution or statistical model. Since Bayesian statistics ...

  4. Bayesian inference - Wikipedia

    en.wikipedia.org/wiki/Bayesian_inference

    Bayesian inference (/ ˈ b eɪ z i ə n / BAY-zee-ən or / ˈ b eɪ ʒ ən / BAY-zhən) [1] is a method of statistical inference in which Bayes' theorem is used to calculate a probability of a hypothesis, given prior evidence, and update it as more information becomes available.

  5. Bayesian hierarchical modeling - Wikipedia

    en.wikipedia.org/wiki/Bayesian_hierarchical_modeling

    The sub-models combine to form the hierarchical model, and Bayes' theorem is used to integrate them with the observed data and account for all the uncertainty that is present. The result of this integration is the posterior distribution, also known as the updated probability estimate, as additional evidence on the prior distribution is acquired.

  6. Bayesian probability - Wikipedia

    en.wikipedia.org/wiki/Bayesian_probability

    Bayesian probability (/ ˈ b eɪ z i ə n / BAY-zee-ən or / ˈ b eɪ ʒ ən / BAY-zhən) [1] is an interpretation of the concept of probability, in which, instead of frequency or propensity of some phenomenon, probability is interpreted as reasonable expectation [2] representing a state of knowledge [3] or as quantification of a personal belief.

  7. Positive and negative predictive values - Wikipedia

    en.wikipedia.org/wiki/Positive_and_negative...

    Bayes' theorem confers inherent limitations on the accuracy of screening tests as a function of disease prevalence or pre-test probability. It has been shown that a testing system can tolerate significant drops in prevalence, up to a certain well-defined point known as the prevalence threshold , below which the reliability of a positive ...

  8. Bayesian econometrics - Wikipedia

    en.wikipedia.org/wiki/Bayesian_econometrics

    The Bayesian principle relies on Bayes' theorem which states that the probability of B conditional on A is the ratio of joint probability of A and B divided by probability of B. Bayesian econometricians assume that coefficients in the model have prior distributions. This approach was first propagated by Arnold Zellner. [1]

  9. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    The likelihood ratio is also of central importance in Bayesian inference, where it is known as the Bayes factor, and is used in Bayes' rule. Stated in terms of odds , Bayes' rule states that the posterior odds of two alternatives, ⁠ A 1 {\displaystyle A_{1}} ⁠ and ⁠ A 2 {\displaystyle A_{2}} ⁠ , given an event ⁠ B {\displaystyle B ...