Ad
related to: graphing inequalities for dummies
Search results
Results from the WOW.Com Content Network
Two-dimensional linear inequalities are expressions in two variables of the form: + < +, where the inequalities may either be strict or not. The solution set of such an inequality can be graphically represented by a half-plane (all the points on one "side" of a fixed line) in the Euclidean plane. [2]
In 1982, Peter Buser proved a reverse version of this inequality, and the two inequalities put together are sometimes called the Cheeger-Buser inequality. These inequalities were highly influential not only in Riemannian geometry and global analysis , but also in the theory of Markov chains and in graph theory , where they have inspired the ...
In mathematics, the Cheeger constant (also Cheeger number or isoperimetric number) of a graph is a numerical measure of whether or not a graph has a "bottleneck". The Cheeger constant as a measure of "bottleneckedness" is of great interest in many areas: for example, constructing well-connected networks of computers, card shuffling.
Jensen's inequality generalizes the statement that a secant line of a convex function lies above its graph. Visualizing convexity and Jensen's inequality. In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function.
gives the inequality. In the special case of n = 1, the Nash inequality can be extended to the L p case, in which case it is a generalization of the Gagliardo-Nirenberg-Sobolev inequality (Brezis 2011, Comments on Chapter 8). In fact, if I is a bounded interval, then for all 1 ≤ r < ∞ and all 1 ≤ q ≤ p < ∞ the following inequality holds
In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. [1] It is used most often to compare two numbers on the number line by their size. The main types of inequality are less than and greater than (denoted by < and >, respectively the less-than and greater-than signs).
Grönwall's inequality is an important tool to obtain various estimates in the theory of ordinary and stochastic differential equations. In particular, it provides a comparison theorem that can be used to prove uniqueness of a solution to the initial value problem ; see the Picard–Lindelöf theorem .
Chebyshev's sum inequality, about sums and products of decreasing sequences Chebyshev's equioscillation theorem , on the approximation of continuous functions with polynomials The statement that if the function π ( x ) ln x / x {\textstyle \pi (x)\ln x/x} has a limit at infinity, then the limit is 1 (where π is the prime-counting function).
Ad
related to: graphing inequalities for dummies