Search results
Results from the WOW.Com Content Network
Long short-term memory (LSTM) [1] is a type of recurrent neural network (RNN) aimed at mitigating the vanishing gradient problem [2] commonly encountered by traditional RNNs. Its relative insensitivity to gap length is its advantage over other RNNs, hidden Markov models , and other sequence learning methods.
Long short-term memory unit. Long short-term memory (LSTM) is the most widely used RNN architecture. It was designed to solve the vanishing gradient problem. LSTM is normally augmented by recurrent gates called "forget gates". [54] LSTM prevents backpropagated errors from vanishing or exploding. [55]
Hochreiter developed the long short-term memory (LSTM) neural network architecture in his diploma thesis in 1991 leading to the main publication in 1997. [3] [4] LSTM overcomes the problem of numerical instability in training recurrent neural networks (RNNs) that prevents them from learning from long sequences (vanishing or exploding gradient).
Time Aware LSTM (T-LSTM) is a long short-term memory (LSTM) unit capable of handling irregular time intervals in longitudinal patient records. T-LSTM was developed by researchers from Michigan State University, IBM Research, and Cornell University and was first presented in the Knowledge Discovery and Data Mining (KDD) conference. [1]
This led to the long short-term memory (LSTM), a type of recurrent neural network. The name LSTM was introduced in a tech report (1995) leading to the most cited LSTM publication (1997), co-authored by Hochreiter and Schmidhuber. [19] It was not yet the standard LSTM architecture which is used in almost all current applications.
Memory networks [69] [70] incorporate long-term memory. The long-term memory can be read and written to, with the goal of using it for prediction. These models have been applied in the context of question answering (QA) where the long-term memory effectively acts as a (dynamic) knowledge base and the output is a textual response. [71]
Gated recurrent units (GRUs) are a gating mechanism in recurrent neural networks, introduced in 2014 by Kyunghyun Cho et al. [1] The GRU is like a long short-term memory (LSTM) with a gating mechanism to input or forget certain features, [2] but lacks a context vector or output gate, resulting in fewer parameters than LSTM. [3]
Long short-term memory (LSTM) networks were invented by Hochreiter and Schmidhuber in 1995 and set accuracy records in multiple applications domains. [46] [49] It became the default choice for RNN architecture. Around 2006, LSTM started to revolutionize speech recognition, outperforming traditional models in certain speech applications.