Search results
Results from the WOW.Com Content Network
Plot of the piecewise linear function = {+. In mathematics, a piecewise function (also called a piecewise-defined function, a hybrid function, or a function defined by cases) is a function whose domain is partitioned into several intervals ("subdomains") on which the function may be defined differently.
A piecewise linear function is a function defined on a (possibly unbounded) interval of real numbers, such that there is a collection of intervals on each of which the function is an affine function. (Thus "piecewise linear" is actually defined to mean "piecewise affine".) If the domain of the function is compact, there needs to be a finite ...
A function property holds piecewise for a function, if the function can be piecewise-defined in a way that the property holds for every subdomain. Examples of functions with such piecewise properties are: Piecewise constant function, also known as a step function; Piecewise linear function; Piecewise continuous function
A function f from X to Y. The set of points in the red oval X is the domain of f. Graph of the real-valued square root function, f(x) = √ x, whose domain consists of all nonnegative real numbers. In mathematics, the domain of a function is the set of inputs accepted by the function.
The function in example 1, a removable discontinuity. Consider the piecewise function = {< = >. The point = is a removable discontinuity.For this kind of discontinuity: The one-sided limit from the negative direction: = and the one-sided limit from the positive direction: + = + at both exist, are finite, and are equal to = = +.
Piecewise linear function, a function whose domain can be decomposed into pieces on which the function is linear; Piecewise linear manifold, a topological space formed by gluing together flat spaces; Piecewise linear homeomorphism, a topological equivalence between two piecewise linear manifolds; Piecewise linear cobordism, a cohomology theory
is a function from domain X to codomain Y. The yellow oval inside Y is the image of . Sometimes "range" refers to the image and sometimes to the codomain. In mathematics, the range of a function may refer to either of two closely related concepts: the codomain of the function, or; the image of the function.
Holomorphic function: complex-valued function of a complex variable which is differentiable at every point in its domain. Meromorphic function: complex-valued function that is holomorphic everywhere, apart from at isolated points where there are poles. Entire function: A holomorphic function whose domain is the entire complex plane ...