enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    If the Markov chain is time-homogeneous, then the transition matrix P is the same after each step, so the k-step transition probability can be computed as the k-th power of the transition matrix, P k. If the Markov chain is irreducible and aperiodic, then there is a unique stationary distribution π. [41]

  3. Examples of Markov chains - Wikipedia

    en.wikipedia.org/wiki/Examples_of_Markov_chains

    A game of snakes and ladders or any other game whose moves are determined entirely by dice is a Markov chain, indeed, an absorbing Markov chain. This is in contrast to card games such as blackjack, where the cards represent a 'memory' of the past moves. To see the difference, consider the probability for a certain event in the game.

  4. Coupling from the past - Wikipedia

    en.wikipedia.org/wiki/Coupling_from_the_past

    Consider a finite state irreducible aperiodic Markov chain with state space and (unique) stationary distribution (is a probability vector). Suppose that we come up with a probability distribution on the set of maps : with the property that for every fixed , its image () is distributed according to the transition probability of from state .

  5. Markov chain mixing time - Wikipedia

    en.wikipedia.org/wiki/Markov_chain_mixing_time

    In probability theory, the mixing time of a Markov chain is the time until the Markov chain is "close" to its steady state distribution.. More precisely, a fundamental result about Markov chains is that a finite state irreducible aperiodic chain has a unique stationary distribution π and, regardless of the initial state, the time-t distribution of the chain converges to π as t tends to infinity.

  6. Aperiodic graph - Wikipedia

    en.wikipedia.org/wiki/Aperiodic_graph

    In a strongly connected graph, if one defines a Markov chain on the vertices, in which the probability of transitioning from v to w is nonzero if and only if there is an edge from v to w, then this chain is aperiodic if and only if the graph is aperiodic. A Markov chain in which all states are recurrent has a strongly connected state transition ...

  7. Kolmogorov's criterion - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov's_criterion

    Consider this figure depicting a section of a Markov chain with states i, j, k and l and the corresponding transition probabilities. Here Kolmogorov's criterion implies that the product of probabilities when traversing through any closed loop must be equal, so the product around the loop i to j to l to k returning to i must be equal to the loop the other way round,

  8. Markov model - Wikipedia

    en.wikipedia.org/wiki/Markov_model

    The simplest Markov model is the Markov chain.It models the state of a system with a random variable that changes through time. In this context, the Markov property indicates that the distribution for this variable depends only on the distribution of a previous state.

  9. Continuous-time Markov chain - Wikipedia

    en.wikipedia.org/wiki/Continuous-time_Markov_chain

    This Markov chain is irreducible, because the ghosts can fly from every state to every state in a finite amount of time. Due to the secret passageway, the Markov chain is also aperiodic, because the ghosts can move from any state to any state both in an even and in an uneven number of state transitions.