Search results
Results from the WOW.Com Content Network
In differential geometry, the first fundamental form is the inner product on the tangent space of a surface in three-dimensional Euclidean space which is induced canonically from the dot product of R 3. It permits the calculation of curvature and metric properties of a surface such as length and area in a manner consistent with the ambient space.
Surfaces that occur in two of the main theorems of vector calculus, Stokes' theorem and the divergence theorem, are frequently given in a parametric form. The curvature and arc length of curves on the surface, surface area, differential geometric invariants such as the first and second fundamental forms, Gaussian, mean, and principal curvatures ...
The normal curvature, k n, is the curvature of the curve projected onto the plane containing the curve's tangent T and the surface normal u; the geodesic curvature, k g, is the curvature of the curve projected onto the surface's tangent plane; and the geodesic torsion (or relative torsion), τ r, measures the rate of change of the surface ...
The Gauss formula [6] now asserts that is the Levi-Civita connection for M, and is a symmetric vector-valued form with values in the normal bundle. It is often referred to as the second fundamental form. An immediate corollary is the Gauss equation for the curvature tensor.
When a line of curvature has a local extremum of the same principal curvature then the curve has a ridge point. These ridge points form curves on the surface called ridges. The ridge curves pass through the umbilics. For the star pattern either 3 or 1 ridge line pass through the umbilic, for the monstar and lemon only one ridge passes through. [3]
The intersection of a normal plane and the surface will form a curve called a normal section and the curvature of this curve is the normal curvature. For most points on most “smooth” surfaces, different normal sections will have different curvatures; the maximum and minimum values of these are called the principal curvatures , call these κ ...
Furthermore, a surface which evolves under the mean curvature of the surface , is said to obey a heat-type equation called the mean curvature flow equation. The sphere is the only embedded surface of constant positive mean curvature without boundary or singularities. However, the result is not true when the condition "embedded surface" is ...
where hZ means the horizontal component of Z, on the right we identified a vertical vector field and a Lie algebra element generating it (fundamental vector field), and {,} is the inverse of the normalization factor used by convention in the formula for the exterior derivative.