Ad
related to: standard to general form parabola worksheet
Search results
Results from the WOW.Com Content Network
Given a quadratic polynomial of the form + the numbers h and k may be interpreted as the Cartesian coordinates of the vertex (or stationary point) of the parabola. That is, h is the x -coordinate of the axis of symmetry (i.e. the axis of symmetry has equation x = h ), and k is the minimum value (or maximum value, if a < 0) of the quadratic ...
In mathematics, a quadratic equation (from Latin quadratus 'square') is an equation that can be rearranged in standard form as [1] + + =, where the variable x represents an unknown number, and a, b, and c represent known numbers, where a ≠ 0. (If a = 0 and b ≠ 0 then the equation is linear, not quadratic.)
Parabolic cylinder () function appears naturally in the Schrödinger equation for the one-dimensional quantum harmonic oscillator (a quantum particle in the oscillator potential), [+] = (), where is the reduced Planck constant, is the mass of the particle, is the coordinate of the particle, is the frequency of the oscillator, is the energy, and () is the particle's wave-function.
In the theory of quadratic forms, the parabola is the graph of the quadratic form x 2 (or other scalings), while the elliptic paraboloid is the graph of the positive-definite quadratic form x 2 + y 2 (or scalings), and the hyperbolic paraboloid is the graph of the indefinite quadratic form x 2 − y 2. Generalizations to more variables yield ...
To convert the standard form to factored form, one needs only the quadratic formula to determine the two roots r 1 and r 2. To convert the standard form to vertex form, one needs a process called completing the square. To convert the factored form (or vertex form) to standard form, one needs to multiply, expand and/or distribute the factors.
Originally developed for growth modelling, it allows for more flexible S-shaped curves. The function is sometimes named Richards's curve after F. J. Richards, who proposed the general form for the family of models in 1959.
A circular paraboloid contains circles. This is also true in the general case (see Circular section). From the point of view of projective geometry, an elliptic paraboloid is an ellipsoid that is tangent to the plane at infinity. Plane sections. The plane sections of an elliptic paraboloid can be: a parabola, if the plane is parallel to the axis,
For linear and quadratic functions, the graph of any function can be obtained from the graph of the parent function by simple translations and stretches parallel to the axes. For example, the graph of y = x 2 − 4 x + 7 can be obtained from the graph of y = x 2 by translating +2 units along the X axis and +3 units along Y axis.
Ad
related to: standard to general form parabola worksheet