enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. NACA airfoil - Wikipedia

    en.wikipedia.org/wiki/NACA_airfoil

    Four- and five-digit series airfoils can be modified with a two-digit code preceded by a hyphen in the following sequence: One digit describing the roundness of the leading edge, with 0 being sharp, 6 being the same as the original airfoil, and larger values indicating a more rounded leading edge.

  3. United States Air Force Stability and Control Digital DATCOM

    en.wikipedia.org/wiki/United_States_Air_Force...

    In February 1976, work commenced to automate the methods contained in the USAF Stability and Control DATCOM, specifically those contained in sections 4, 5, 6 and 7.The work was performed by the McDonnell Douglas Corporation under contract with the United States Air Force in conjunction with engineers at the Air Force Flight Dynamics Laboratory in Wright-Patterson Air Force Base.

  4. Airfoil - Wikipedia

    en.wikipedia.org/wiki/Airfoil

    For example, an airfoil of the NACA 4-digit series such as the NACA 2415 (to be read as 2 – 4 – 15) describes an airfoil with a camber of 0.02 chord located at 0.40 chord, with 0.15 chord of maximum thickness. Finally, important concepts used to describe the airfoil's behaviour when moving through a fluid are:

  5. File:Examples of Airfoils.svg - Wikipedia

    en.wikipedia.org/wiki/File:Examples_of_Airfoils.svg

    English: Selected airfoils in nature and various vehicles, with their approximate chord length indicated. Sources for the shapes of the airfoils: Low-speed ULM wing: drawn over own photo of low-cost, low-speed ultralight; Propeller blade: drawn over own photo of a sliced WW2-era bomber propeller

  6. Talk:NACA airfoil - Wikipedia

    en.wikipedia.org/wiki/Talk:NACA_airfoil

    TT: the usual two-digit maximum camber in percent of chord; Accordingly, the given example “77887” is nonsensical. You simply cannot have a an “8” in the middle position: it _must_ be either “0” or “1”. An 87%-of-chord thickness is also highly dubious: _none_ of the canonical NACA profiles (10 5-digit and 87 4-digit) go beyond 25%.

  7. Clark Y airfoil - Wikipedia

    en.wikipedia.org/wiki/Clark_Y_airfoil

    The profile was designed in 1922 by Virginius E. Clark using thickness distribution of the German-developed Goettingen 398 airfoil. [1] The airfoil has a thickness of 11.7 percent and is flat on the lower surface aft of 30 percent of chord. The flat bottom simplifies angle measurements on propellers, and makes for easy construction of wings.

  8. Supercritical airfoil - Wikipedia

    en.wikipedia.org/wiki/Supercritical_airfoil

    Supercritical airfoils feature four main benefits: they have a higher drag-divergence Mach number, [21] they develop shock waves farther aft than traditional airfoils, [22] they greatly reduce shock-induced boundary layer separation, and their geometry allows more efficient wing design (e.g., a thicker wing and/or reduced wing sweep, each of which may allow a lighter wing).

  9. Kline–Fogleman airfoil - Wikipedia

    en.wikipedia.org/wiki/Kline–Fogleman_airfoil

    Further development resulted in two patents and a family of airfoils known as the KF airfoil and KFm airfoils (for Kline–Fogleman modified). The two patents, US Patent # 3,706,430 and US Patent # 4,046,338, refer to the introduction of a step on either the bottom (KFm1) or the top (KFm2) of an airfoil , or on both the top and bottom (KFm4).