Search results
Results from the WOW.Com Content Network
Decay heat is the heat released as a result of radioactive decay. This heat is produced as an effect of radiation on materials: the energy of the alpha, beta or gamma radiation is converted into the thermal movement of atoms. Decay heat occurs naturally from decay of long-lived radioisotopes that are primordially present from the Earth's formation.
Internal conversion is an atomic decay process where an excited nucleus interacts electromagnetically with one of the orbital electrons of an atom. This causes the electron to be emitted (ejected) from the atom. [1] [2] Thus, in internal conversion (often abbreviated IC), a high-energy electron is emitted from the excited atom, but not from the ...
These types of decay involve the nuclear capture of electrons or emission of electrons or positrons, and thus acts to move a nucleus toward the ratio of neutrons to protons that has the least energy for a given total number of nucleons. This consequently produces a more stable (lower energy) nucleus.
alpha decay; The decay energy is the mass difference Δm between the parent and the daughter atom and particles. It is equal to the energy of radiation E. If A is the radioactive activity, i.e. the number of transforming atoms per time, M the molar mass, then the radiation power P is: = (). or
The released neutrons then cause fission of other uranium atoms, until all of the available uranium is exhausted. This is called a chain reaction . Artificial nuclear transmutation has been considered as a possible mechanism for reducing the volume and hazard of radioactive waste .
Electron capture is always an alternative decay mode for radioactive isotopes that do have sufficient energy to decay by positron emission. Electron capture is sometimes included as a type of beta decay , [ 1 ] because the basic nuclear process, mediated by the weak force, is the same.
Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or "decays" into a different atomic nucleus, with a mass number that is reduced by four and an atomic number that is reduced by two.
The macroscopic energy equation for infinitesimal volume used in heat transfer analysis is [6] = +, ˙, where q is heat flux vector, −ρc p (∂T/∂t) is temporal change of internal energy (ρ is density, c p is specific heat capacity at constant pressure, T is temperature and t is time), and ˙ is the energy conversion to and from thermal ...