enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Arc length - Wikipedia

    en.wikipedia.org/wiki/Arc_length

    Thus the length of a curve is a non-negative real number. Usually no curves are considered which are partly spacelike and partly timelike. In theory of relativity, arc length of timelike curves (world lines) is the proper time elapsed along the world line, and arc length of a spacelike curve the proper distance along the curve.

  3. Geodesic curvature - Wikipedia

    en.wikipedia.org/wiki/Geodesic_curvature

    Consider a curve in a manifold ¯, parametrized by arclength, with unit tangent vector = /.Its curvature is the norm of the covariant derivative of : = ‖ / ‖.If lies on , the geodesic curvature is the norm of the projection of the covariant derivative / on the tangent space to the submanifold.

  4. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    The curve () describes the deflection of the beam in the direction at some position (recall that the beam is modeled as a one-dimensional object). is a distributed load, in other words a force per unit length (analogous to pressure being a force per area); it may be a function of , , or other variables.

  5. Euler spiral - Wikipedia

    en.wikipedia.org/wiki/Euler_spiral

    A double-end Euler spiral. The curve continues to converge to the points marked, as t tends to positive or negative infinity. An Euler spiral is a curve whose curvature changes linearly with its curve length (the curvature of a circular curve is equal to the reciprocal of the radius). This curve is also referred to as a clothoid or Cornu spiral.

  6. Differentiable curve - Wikipedia

    en.wikipedia.org/wiki/Differentiable_curve

    Differential geometry of curves is the branch of geometry that deals with smooth curves in the plane and the Euclidean space by methods of differential and integral calculus. Many specific curves have been thoroughly investigated using the synthetic approach .

  7. Torsion of a curve - Wikipedia

    en.wikipedia.org/wiki/Torsion_of_a_curve

    Let r = r(t) be the parametric equation of a space curve. Assume that this is a regular parametrization and that the curvature of the curve does not vanish. Analytically, r(t) is a three times differentiable function of t with values in R 3 and the vectors ′ (), ″ are linearly independent.

  8. Tautochrone curve - Wikipedia

    en.wikipedia.org/wiki/Tautochrone_curve

    This is called Abel's integral equation and allows us to compute the total time required for a particle to fall along a given curve (for which / would be easy to calculate). But Abel's mechanical problem requires the converse – given T ( y 0 ) {\displaystyle T(y_{0})\,} , we wish to find f ( y ) = d ℓ / d y {\displaystyle f(y)={d\ell }/{dy ...

  9. Cantilever method - Wikipedia

    en.wikipedia.org/wiki/Cantilever_method

    The cantilever method is an approximate method for calculating shear forces and moments developed in beams and columns of a frame or structure due to lateral loads. The applied lateral loads typically include wind loads and earthquake loads, which must be taken into consideration while designing buildings.

  1. Related searches how to calculate cantilever length of curve in calculus 3 answers key free

    how long is a curvewhat is a curve length
    cantilever beam examples