Search results
Results from the WOW.Com Content Network
The particle horizon, also called the cosmological horizon, the comoving horizon, or the cosmic light horizon, is the maximum distance from which light from particles could have traveled to the observer in the age of the universe. It represents the boundary between the observable and the unobservable regions of the universe, so its distance at ...
View of the ocean with two ships: one in the foreground and one to the left of it on the horizon. Historically, the distance to the visible horizon has long been vital to survival and successful navigation, especially at sea, because it determined an observer's maximum range of vision and thus of communication, with all the obvious consequences for safety and the transmission of information ...
In standard cosmology, comoving distance and proper distance (or physical distance) are two closely related distance measures used by cosmologists to define distances between objects. Comoving distance factors out the expansion of the universe , giving a distance that does not change in time except due to local factors, such as the motion of a ...
The particle horizon (also called the cosmological horizon, the comoving horizon (in Scott Dodelson's text), or the cosmic light horizon) is the maximum distance from which light from particles could have traveled to the observer in the age of the universe.
Finding the latitude requires measuring the vertical angle (altitude) of X from the horizon using a sextant, the declination of X from a reference book, and a set of sight reduction Tables. The sun, moon, and planets move relative to the celestial sphere, but only the stars' hour angles change with the rotation of the earth, completing a full ...
Refraction by the atmosphere is corrected for with the aid of a table or calculation and the observer's height of eye above sea level results in a "dip" correction (as the observer's eye is raised the horizon dips below the horizontal). If the Sun or Moon was observed, a semidiameter correction is also applied to find the centre of the object.
Assuming a perfect sphere with no terrain irregularity, the distance to the horizon from a high altitude transmitter (i.e., line of sight) can readily be calculated. Let R be the radius of the Earth and h be the altitude of a telecommunication station. The line of sight distance d of this station is given by the Pythagorean theorem;
Prevailing visibility in aviation is a measurement of the greatest distance visible throughout at least half of the horizon, not necessarily continuously.To take the prevailing visibility, controllers reference a number of visual reference points: usually buildings, hills, or other geographic features.