enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Compounding of steam turbines - Wikipedia

    en.wikipedia.org/wiki/Compounding_of_steam_turbines

    Fig-4: Velocity Diagram of Pressure compounded Impulse Turbine. The velocity diagram shown in figure 4 gives detail about the various components of steam velocity and Blade velocity. where, symbols have the same meaning as given above. An important point to note from the above velocity diagram is that the fluid exit angle (δ) is 90⁰.

  3. Steam turbine - Wikipedia

    en.wikipedia.org/wiki/Steam_turbine

    In 1827 the Frenchmen Real and Pichon patented and constructed a compound impulse turbine. [11] The first steam turbine-powered ship Turbinia: fastest in the world at that time. The modern steam turbine was invented in 1884 by Charles Parsons, whose first model was connected to a dynamo that generated 7.5 kilowatts (10.1 hp) of electricity. [12]

  4. Pressure compounding in turbines - Wikipedia

    en.wikipedia.org/wiki/Pressure_compounding_in...

    The exit steam from one turbine is made to enter the nozzle of the succeeding turbine. Each of the simple impulse turbines would then be termed a "stage" of the turbine. Each stage comprises its ring of nozzle and blades. The steam from the boiler passes through the first nozzle ring, where its pressure drops and velocity increases. [2]

  5. Turbine - Wikipedia

    en.wikipedia.org/wiki/Turbine

    A steam turbine with the case opened Humming of a small pneumatic turbine used in a German 1940s-vintage safety lamp. A turbine (/ ˈ t ɜːr b aɪ n / or / ˈ t ɜːr b ɪ n /) (from the Greek τύρβη, tyrbē, or Latin turbo, meaning vortex) [1] [2] is a rotary mechanical device that extracts energy from a fluid flow and converts it into useful work.

  6. Pelton wheel - Wikipedia

    en.wikipedia.org/wiki/Pelton_wheel

    The impulse energy of the water jet exerts torque on the bucket-and-wheel system, spinning the wheel; the water jet does a "u-turn" and exits at the outer sides of the bucket, decelerated to a low velocity. In the process, the water jet's momentum is transferred to the wheel and hence to a turbine. Thus, "impulse" energy does work on the turbine.

  7. File:Turbines impulse v reaction.svg - Wikipedia

    en.wikipedia.org/wiki/File:Turbines_impulse_v...

    The factual accuracy of this diagram or the file name is disputed. Reason: Überdruckturbine: die oberste Grafik zeigt eine Turbine mit Reaktionsgrad 1, der Druckverlauf unten zeigt eine Turbine mit Reaktionsgrad 0.5.

  8. Compound turbine - Wikipedia

    en.wikipedia.org/wiki/Compound_turbine

    Divided flow low-pressure turbine rotor. Steam enters at the centre and expands in both directions. The principal advantages of compound turbines are the reduction in size of any one casing, the confinement of the highest pressure to the smaller casing (which may be made of stronger and more expensive materials) and the possibility of divided flow in the low-pressure casing for the purpose of ...

  9. Gustaf de Laval - Wikipedia

    en.wikipedia.org/wiki/Gustaf_de_Laval

    In 1882 he introduced his concept of an impulse steam turbine [2] and in 1887 built a small steam turbine to demonstrate that such devices could be constructed on that scale. In 1890, Laval developed a nozzle to increase the steam jet to supersonic speed, working from the kinetic energy of the steam, rather than its pressure.