Search results
Results from the WOW.Com Content Network
Fig-4: Velocity Diagram of Pressure compounded Impulse Turbine. The velocity diagram shown in figure 4 gives detail about the various components of steam velocity and Blade velocity. where, symbols have the same meaning as given above. An important point to note from the above velocity diagram is that the fluid exit angle (δ) is 90⁰.
Schematic diagram outlining the difference between an impulse and a 50% reaction turbine. Turbine blades are of two basic types, blades and nozzles. Blades move entirely due to the impact of steam on them and their profiles do not converge. This results in a steam velocity drop and essentially no pressure drop as steam moves through the blades.
A Reaction Turbine Stage [1] Reaction Turbomachines operate by reacting to the flow of fluid through aerofoil shaped rotor and stator blades. The velocity of the fluid through the sets of blades increases slightly (as with a nozzle) as it passes from rotor to stator and vice versa. The velocity of the fluid then decreases again once it has ...
Schematic of impulse and reaction turbines, where the rotor is the rotating part, and the stator is the stationary part of the machine. A working fluid contains potential energy (pressure head) and kinetic energy (velocity head). The fluid may be compressible or incompressible. Several physical principles are employed by turbines to collect ...
The degree of reaction contributes to the stage efficiency and thus used as a design parameter. Stages having 50% degree of reaction are used where the pressure drop is equally shared by the stator and the rotor for a turbine. Figure 4. Velocity triangle for Degree of Reaction = 1/2 in a turbine
The Francis turbine is a type of water turbine. It is an inward-flow reaction turbine that combines radial and axial flow concepts. Francis turbines are the most common water turbine in use today, and can achieve over 95% efficiency. [1] The process of arriving at the modern Francis runner design took from 1848 to approximately 1920. [1]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
An example of a velocity triangle drawn for the inlet of a turbomachine. The "1" subscript denotes the high pressure side (inlet in case of turbines and outlet in case of pumps/compressors). A general velocity triangle consists of the following vectors: [1] [2] V = absolute velocity of the fluid. U = blade linear velocity.