enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quadric - Wikipedia

    en.wikipedia.org/wiki/Quadric

    In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas).It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections.

  3. Quadric (algebraic geometry) - Wikipedia

    en.wikipedia.org/wiki/Quadric_(algebraic_geometry)

    The two families of lines on a smooth (split) quadric surface. In mathematics, a quadric or quadric hypersurface is the subspace of N-dimensional space defined by a polynomial equation of degree 2 over a field. Quadrics are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine ...

  4. Quadric geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Quadric_geometric_algebra

    Quadric geometric algebra (QGA) is a geometrical application of the , geometric algebra.This algebra is also known as the , Clifford algebra.QGA is a super-algebra over , conformal geometric algebra (CGA) and , spacetime algebra (STA), which can each be defined within sub-algebras of QGA.

  5. Category:Quadrics - Wikipedia

    en.wikipedia.org/wiki/Category:Quadrics

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more

  6. Plücker coordinates - Wikipedia

    en.wikipedia.org/wiki/Plücker_coordinates

    For example, a hyperboloid of one sheet is a quadric surface in ⁠ ⁠ ruled by two different families of lines, one line of each passing through each point of the surface; each family corresponds under the Plücker map to a conic section within the Klein quadric in ⁠ ⁠.

  7. Analytic geometry - Wikipedia

    en.wikipedia.org/wiki/Analytic_geometry

    A quadric, or quadric surface, is a 2-dimensional surface in 3-dimensional space defined as the locus of zeros of a quadratic polynomial. In coordinates x 1 , x 2 , x 3 , the general quadric is defined by the algebraic equation [ 21 ]

  8. Paraboloid - Wikipedia

    en.wikipedia.org/wiki/Paraboloid

    In geometry, a paraboloid is a quadric surface that has exactly one axis of symmetry and no center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar property of symmetry. Every plane section of a paraboloid made by a plane parallel to the axis of symmetry is a parabola.

  9. Fake projective plane - Wikipedia

    en.wikipedia.org/wiki/Fake_projective_plane

    A surface of general type with the same Betti numbers as a minimal surface not of general type must have the Betti numbers of either a projective plane P 2 or a quadric P 1 ×P 1. Shavel (1978) constructed some "fake quadrics": surfaces of general type with the same Betti numbers as quadrics. Beauville surfaces give further examples.