enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. AVL tree - Wikipedia

    en.wikipedia.org/wiki/AVL_tree

    With the new operations, the implementation of AVL trees can be more efficient and highly-parallelizable. [13] The function Join on two AVL trees t 1 and t 2 and a key k will return a tree containing all elements in t 1, t 2 as well as k. It requires k to be greater than all keys in t 1 and smaller than all keys in t 2.

  3. List of data structures - Wikipedia

    en.wikipedia.org/wiki/List_of_data_structures

    AA tree; AVL tree; Binary search tree; Binary tree; Cartesian tree; Conc-tree list; Left-child right-sibling binary tree; Order statistic tree; Pagoda; Randomized binary search tree; Red–black tree; Rope; Scapegoat tree; Self-balancing binary search tree; Splay tree; T-tree; Tango tree; Threaded binary tree; Top tree; Treap; WAVL tree; Weight ...

  4. Join-based tree algorithms - Wikipedia

    en.wikipedia.org/wiki/Join-based_tree_algorithms

    Under this framework, the join operation captures all balancing criteria of different balancing schemes, and all other functions join have generic implementation across different balancing schemes. The join-based algorithms can be applied to at least four balancing schemes: AVL trees, red–black trees, weight-balanced trees and treaps.

  5. Interval tree - Wikipedia

    en.wikipedia.org/wiki/Interval_tree

    CGAL : Computational Geometry Algorithms Library in C++ contains a robust implementation of Range Trees; Boost.Icl offers C++ implementations of interval sets and maps. IntervalTree (Python) - a centered interval tree with AVL balancing, compatible with tagged intervals; Interval Tree (C#) - an augmented interval tree, with AVL balancing

  6. Tree rotation - Wikipedia

    en.wikipedia.org/wiki/Tree_rotation

    The tree rotation renders the inorder traversal of the binary tree invariant. This implies the order of the elements is not affected when a rotation is performed in any part of the tree. Here are the inorder traversals of the trees shown above: Left tree: ((A, P, B), Q, C) Right tree: (A, P, (B, Q, C))

  7. Self-balancing binary search tree - Wikipedia

    en.wikipedia.org/wiki/Self-balancing_binary...

    For comparison, an AVL tree is guaranteed to be within a factor of 1.44 of the optimal height while requiring only two additional bits of storage in a naive implementation. [1] Therefore, most self-balancing BST algorithms keep the height within a constant factor of this lower bound.

  8. Associative array - Wikipedia

    en.wikipedia.org/wiki/Associative_array

    Associative arrays may also be stored in unbalanced binary search trees or in data structures specialized to a particular type of keys such as radix trees, tries, Judy arrays, or van Emde Boas trees, though the relative performance of these implementations varies.

  9. Tree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Tree_(graph_theory)

    The depth of a tree is the maximum depth of any vertex. Depth is commonly needed in the manipulation of the various self-balancing trees, AVL trees in particular. The root has depth zero, leaves have height zero, and a tree with only a single vertex (hence both a root and leaf) has depth and height zero.