Search results
Results from the WOW.Com Content Network
This is the integral form of the capacitor equation: ... When an inductive circuit is opened, the current through the inductance collapses quickly, creating a large ...
Next, this displacement current is related to the charging of the capacitor. Consider the current in the imaginary cylindrical surface shown surrounding the left plate. A current, say I, passes outward through the left surface L of the cylinder, but no conduction current (no transport of real charges) crosses the right surface R.
Ohm's law states that the electric current through a conductor between two points is directly proportional to the voltage across the two points. Introducing the constant of proportionality, the resistance, [1] one arrives at the three mathematical equations used to describe this relationship: [2]
When the inductor (L) and capacitor (C) are connected in parallel as shown here, the voltage V across the open terminals is equal to both the voltage across the inductor and the voltage across the capacitor. The total current I flowing into the positive terminal of the circuit is equal to the sum of the current flowing through the inductor and ...
Combining the equation for capacitance with the above equation for the energy stored in a capacitor, for a flat-plate capacitor the energy stored is: = =. where is the energy, in joules; is the capacitance, in farads; and is the voltage, in volts.
The phase angles in the equations for the impedance of capacitors and inductors indicate that the voltage across a capacitor lags the current through it by a phase of /, while the voltage across an inductor leads the current through it by /. The identical voltage and current amplitudes indicate that the magnitude of the impedance is equal to one.
The voltage across the capacitor, which is time-dependent, can be found by using Kirchhoff's current law. The current through the resistor must be equal in magnitude (but opposite in sign) to the time derivative of the accumulated charge on the capacitor. This results in the linear differential equation
Resonance occurs because energy for this situation is stored in two different ways: in an electric field as the capacitor is charged and in a magnetic field as current flows through the inductor. Energy can be transferred from one to the other within the circuit and this can be oscillatory.