enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    Its Euler characteristic is 0, by the product property. More generally, any compact parallelizable manifold, including any compact Lie group, has Euler characteristic 0. [12] The Euler characteristic of any closed odd-dimensional manifold is also 0. [13] The case for orientable examples is a corollary of Poincaré duality.

  3. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    Another related result, which can be proved using the Gauss–Bonnet theorem, is the Poincaré-Hopf index theorem for vector fields on M which vanish at only a finite number of points: the sum of the indices at these points equals the Euler characteristic, where the index of a point is defined as follows: on a small circle round each isolated ...

  4. Genus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Genus_(mathematics)

    The non-orientable genus, demigenus, or Euler genus of a connected, non-orientable closed surface is a positive integer representing the number of cross-caps attached to a sphere. Alternatively, it can be defined for a closed surface in terms of the Euler characteristic χ, via the relationship χ = 2 − k, where k is the non-orientable genus.

  5. List of regular polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_regular_polytopes

    The regular star polyhedra are called the Kepler–Poinsot polyhedra and there are four of them, based on the vertex arrangements of the dodecahedron {5,3} and icosahedron {3,5}: As spherical tilings, these star forms overlap the sphere multiple times, called its density, being 3 or 7 for these forms.

  6. Euler class - Wikipedia

    en.wikipedia.org/wiki/Euler_class

    Thus the Euler class is a generalization of the Euler characteristic to vector bundles other than tangent bundles. In turn, the Euler class is the archetype for other characteristic classes of vector bundles, in that each "top" characteristic class equals the Euler class, as follows. Modding out by 2 induces a map

  7. Manifold - Wikipedia

    en.wikipedia.org/wiki/Manifold

    Thus 2 is a topological invariant of the sphere, called its Euler characteristic. On the other hand, a torus can be sliced open by its 'parallel' and 'meridian' circles, creating a map with V = 1 vertex, E = 2 edges, and F = 1 face. Thus the Euler characteristic of the torus is 1 − 2 + 1 = 0.

  8. Riemann–Hurwitz formula - Wikipedia

    en.wikipedia.org/wiki/Riemann–Hurwitz_formula

    In calculating the Euler characteristic of S′ we notice the loss of e P − 1 copies of P above π(P) (that is, in the inverse image of π(P)). Now let us choose triangulations of S and S′ with vertices at the branch and ramification points, respectively, and use these to compute the Euler characteristics.

  9. Spherical geometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_geometry

    The Book of Unknown Arcs of a Sphere written by the Islamic mathematician Al-Jayyani is considered to be the first treatise on spherical trigonometry. The book contains formulae for right-handed triangles, the general law of sines, and the solution of a spherical triangle by means of the polar triangle. [5]