Search results
Results from the WOW.Com Content Network
A centripetal force (from Latin centrum, "center" and petere, "to seek" [1]) is a force that makes a body follow a curved path.The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path.
This acceleration is known as centripetal acceleration. For a path of radius r , when an angle θ is swept out, the distance traveled on the periphery of the orbit is s = rθ . Therefore, the speed of travel around the orbit is v = r d θ d t = r ω , {\displaystyle v=r{\frac {d\theta }{dt}}=r\omega ,} where the angular rate of rotation is ω .
The last term in the acceleration is radially inward of magnitude ω 2 R, which is therefore the instantaneous centripetal acceleration of circular motion. [46] The first term is perpendicular to the radial direction, and pointing in the direction of travel.
In a nonuniform circular motion, i.e., the speed along the curved path is changing, the acceleration has a non-zero component tangential to the curve, and is not confined to the principal normal, which directs to the center of the osculating circle, that determines the radius for the centripetal acceleration.
The whole path is continuous, and its pieces are smooth. Now assume a point particle moves with constant speed along this path, so its tangential acceleration is zero. The centripetal acceleration given by v 2 / r is normal to the arc and inward.
The "acceleration of gravity" (involved in the "force of gravity") never contributes to proper acceleration in any circumstances, and thus the proper acceleration felt by observers standing on the ground is due to the mechanical force from the ground, not due to the "force" or "acceleration" of gravity. If the ground is removed and the observer ...
The low pressure, which must be present to provide the centripetal acceleration, will also increase the flow speed as the fluid travels from higher to lower values of pressure. Thus we find the maximum speed in the flow, V = 2U, in the low pressure on the sides of the cylinder. A value of V > U is consistent with conservation of the volume of ...
Centripetal force; Centrifugal force ... mass of the pendulum, g is the acceleration due to ... just by considering the mass of the rod or the bob to be zero ...