Search results
Results from the WOW.Com Content Network
Johann Heinrich Lambert proved (1761) that π cannot be rational, and that e n is irrational if n is rational (unless n = 0). [25] While Lambert's proof is often called incomplete, modern assessments support it as satisfactory, and in fact for its time it is unusually rigorous.
Rational numbers (): Numbers that can be expressed as a ratio of an integer to a non-zero integer. [3] All integers are rational, but there are rational numbers that are not integers, such as −2/9. Real numbers (): Numbers that correspond to points along a line. They can be positive, negative, or zero.
0.91596 55941 77219 01505 [Mw 25] ... Rational numbers have two continued fractions; the version in this list is the shorter one. ... is irrational. If true, this ...
Rational numbers have irrationality exponent 1, while (as a consequence of Dirichlet's approximation theorem) every irrational number has irrationality exponent at least 2. On the other hand, an application of Borel-Cantelli lemma shows that almost all numbers, including all algebraic irrational numbers , have an irrationality exponent exactly ...
In mathematics, an irrational number is any real number that is not a rational number, i.e., one that cannot be written as a fraction a / b with a and b integers and b not zero. This is also known as being incommensurable, or without common measure. The irrational numbers are precisely those numbers whose expansion in any given base (decimal ...
The real numbers include the rational numbers, such as the integer −5 and the fraction 4 / 3. The rest of the real numbers are called irrational numbers. Some irrational numbers (as well as all the rationals) are the root of a polynomial with integer coefficients, such as the square root √2 = 1.414...; these are called algebraic numbers.
No non-integer rational number can be represented as a finite base-φ number. In other words, all finitely representable base-φ numbers are either integers or (more likely) an irrational in a quadratic field Q[√ 5]. Due to long division having only a finite number of possible remainders, a division of two integers (or other numbers with ...
In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...