Search results
Results from the WOW.Com Content Network
In finance, the binomial options pricing model (BOPM) provides a generalizable numerical method for the valuation of options. Essentially, the model uses a "discrete-time" ( lattice based ) model of the varying price over time of the underlying financial instrument, addressing cases where the closed-form Black–Scholes formula is wanting.
See Binomial options pricing model § Method for more detail, as well as Rational pricing § Risk neutral valuation for logic and formulae derivation. As stated above, the lattice approach is particularly useful in valuing American options , where the choice whether to exercise the option early , or to hold the option, may be modeled at each ...
Download as PDF; Printable version; ... Binomial options pricing model; ... Finite difference methods for option pricing; Fisher equation;
The trinomial tree is a lattice-based computational model used in financial mathematics to price options. It was developed by Phelim Boyle in 1986. It is an extension of the binomial options pricing model, and is conceptually similar. It can also be shown that the approach is equivalent to the explicit finite difference method for option ...
In finance, a price (premium) is paid or received for purchasing or selling options.This article discusses the calculation of this premium in general. For further detail, see: Mathematical finance § Derivatives pricing: the Q world for discussion of the mathematics; Financial engineering for the implementation; as well as Financial modeling § Quantitative finance generally.
The approach arises since the evolution of the option value can be modelled via a partial differential equation (PDE), as a function of (at least) time and price of underlying; see for example the Black–Scholes PDE. Once in this form, a finite difference model can be derived, and the valuation obtained.
Download QR code; Print/export Download as PDF; Printable version; In other projects Wikidata item; Appearance. ... Binary option; Binomial options pricing model;
In financial mathematics, the Ho-Lee model is a short-rate model widely used in the pricing of bond options, swaptions and other interest rate derivatives, and in modeling future interest rates. [1]: 381 It was developed in 1986 by Thomas Ho [2] and Sang Bin Lee. [3] Under this model, the short rate follows a normal process: