Search results
Results from the WOW.Com Content Network
Recursion allows direct implementation of functionality defined by mathematical induction and recursive divide and conquer algorithms. Here is an example of a recursive function in C/C++ to find Fibonacci numbers:
The n-Fibonacci constant is the ratio toward which adjacent -Fibonacci numbers tend; it is also called the n th metallic mean, and it is the only positive root of =. For example, the case of n = 1 {\displaystyle n=1} is 1 + 5 2 {\displaystyle {\frac {1+{\sqrt {5}}}{2}}} , or the golden ratio , and the case of n = 2 {\displaystyle n=2} is 1 + 2 ...
Below is a recursive implementation of the Fibonacci function in Cilk, with parallel recursive calls, which demonstrates the spawn, and sync keywords. The original Cilk required any function using these to be annotated with the cilk keyword, which is gone as of Cilk Plus. (Cilk program code is not numbered; the numbers have been added only to ...
A Fibonacci prime is a Fibonacci number that is prime. The first few are: [47] 2, 3, 5, 13, 89, 233, 1597, 28657, 514229, ... Fibonacci primes with thousands of digits have been found, but it is not known whether there are infinitely many. [48] F kn is divisible by F n, so, apart from F 4 = 3, any Fibonacci prime must have a prime index.
When executed, the fibonacci function computes the value of some of the numbers in the sequence many times over, whereas fibonacci_mem reuses the value of n which was computed previously: Recursive Version
Chains of three or more functions are possible; for example, function 1 calls function 2, function 2 calls function 3, and function 3 calls function 1 again. Indirect recursion is also called mutual recursion , which is a more symmetric term, though this is simply a difference of emphasis, not a different notion.
In computer science, corecursion is a type of operation that is dual to recursion.Whereas recursion works analytically, starting on data further from a base case and breaking it down into smaller data and repeating until one reaches a base case, corecursion works synthetically, starting from a base case and building it up, iteratively producing data further removed from a base case.
A total recursive function is a partial recursive function that is defined for every input. Every primitive recursive function is total recursive, but not all total recursive functions are primitive recursive. The Ackermann function A(m,n) is a well-known example of a total recursive function (in fact, provable total), that is not primitive ...