enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uranium-238 - Wikipedia

    en.wikipedia.org/wiki/Uranium-238

    In a fission nuclear reactor, uranium-238 can be used to generate plutonium-239, which itself can be used in a nuclear weapon or as a nuclear-reactor fuel supply. In a typical nuclear reactor, up to one-third of the generated power comes from the fission of 239 Pu, which is not supplied as a fuel to the reactor, but rather, produced from 238 U. [5] A certain amount of production of 239

  3. Nuclear chain reaction - Wikipedia

    en.wikipedia.org/wiki/Nuclear_chain_reaction

    A possible nuclear fission chain reaction: 1) A uranium-235 atom absorbs a neutron and fissions into two fission fragments, releasing three new neutrons and a large amount of binding energy. 2) One of those neutrons is absorbed by an atom of uranium-238, and does not continue the reaction. Another neutron leaves the system without being absorbed.

  4. Fission products (by element) - Wikipedia

    en.wikipedia.org/wiki/Fission_products_(by_element)

    Fission product yields by mass for thermal neutron fission of U-235 and Pu-239 (the two typical of current nuclear power reactors) and U-233 (used in the thorium cycle). This page discusses each of the main elements in the mixture of fission products produced by nuclear fission of the common nuclear fuels uranium and plutonium.

  5. Nuclear fission - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fission

    The experiment involved placing uranium oxide inside of an ionization chamber and irradiating it with neutrons, and measuring the energy thus released. The results confirmed that fission was occurring and hinted strongly that it was the isotope uranium 235 in particular that was fissioning.

  6. Decay heat - Wikipedia

    en.wikipedia.org/wiki/Decay_heat

    Decay heat as fraction of full power for a reactor SCRAMed from full power at time 0, using two different correlations. In a typical nuclear fission reaction, 187 MeV of energy are released instantaneously in the form of kinetic energy from the fission products, kinetic energy from the fission neutrons, instantaneous gamma rays, or gamma rays from the capture of neutrons. [7]

  7. Nuclear fission product - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fission_product

    The sum of the atomic mass of the two atoms produced by the fission of one fissile atom is always less than the atomic mass of the original atom. This is because some of the mass is lost as free neutrons, and once kinetic energy of the fission products has been removed (i.e., the products have been cooled to extract the heat provided by the reaction), then the mass associated with this energy ...

  8. Breeder reactor - Wikipedia

    en.wikipedia.org/wiki/Breeder_reactor

    The largest component is the remaining uranium which is around 98.25% uranium-238, 1.1% uranium-235, and 0.65% uranium-236. The U-236 comes from the non-fission capture reaction where U-235 absorbs a neutron but releases only a high energy gamma ray instead of undergoing fission.

  9. Tamper (nuclear weapon) - Wikipedia

    en.wikipedia.org/wiki/Tamper_(nuclear_weapon)

    Uranium-238 will fission when struck by a neutron with 1.6 megaelectronvolts (0.26 pJ), and about half the neutrons produced by the fission of uranium-235 will exceed this threshold. However, a fast neutron striking a uranium-238 nucleus is eight times as likely to be inelastically scattered as to produce a fission, and when it does so, it is ...