Search results
Results from the WOW.Com Content Network
In Newtonian mechanics, momentum (pl.: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. . It is a vector quantity, possessing a magnitude and a directi
The moment of force, or torque, is a first moment: =, or, more generally, .; Similarly, angular momentum is the 1st moment of momentum: =.Momentum itself is not a moment.; The electric dipole moment is also a 1st moment: = for two opposite point charges or () for a distributed charge with charge density ().
Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.
Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity – the total angular momentum of a closed system remains constant. Angular momentum has both a direction and a magnitude, and both are conserved.
Momentum: the drag experienced by a rain drop as it falls in the atmosphere is an example of momentum diffusion (the rain drop loses momentum to the surrounding air through viscous stresses and decelerates). The molecular transfer equations of Newton's law for fluid momentum, Fourier's law for heat, and Fick's law for mass are
angular momentum. Also (rarely) moment of momentum or rotational momentum. The rotational equivalent of linear momentum. It is an important quantity in physics because it is a conserved quantity–that is, the total angular momentum of a closed system remains constant. angular velocity (ω)
An example of linear motion is an athlete running a 100-meter dash along a straight track. [2] Linear motion is the most basic of all motion. According to Newton's first law of motion, objects that do not experience any net force will continue to move in a straight line with a constant velocity until they are subjected to a net force.
The definition of angular momentum for a single point particle is: = where p is the particle's linear momentum and r is the position vector from the origin. The time-derivative of this is: The time-derivative of this is: