enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    A primality test is an algorithm for determining whether an input number is prime.Among other fields of mathematics, it is used for cryptography.Unlike integer factorization, primality tests do not generally give prime factors, only stating whether the input number is prime or not.

  3. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    A prime number is a natural number that has exactly two distinct natural number divisors: the number 1 and itself. To find all the prime numbers less than or equal to a given integer n by Eratosthenes' method: Create a list of consecutive integers from 2 through n: (2, 3, 4, ..., n). Initially, let p equal 2, the smallest prime number.

  4. Lucas primality test - Wikipedia

    en.wikipedia.org/wiki/Lucas_primality_test

    The algorithm can be written in pseudocode as follows: algorithm lucas_primality_test is input: n > 2, an odd integer to be tested for primality. k, a parameter that determines the accuracy of the test. output: prime if n is prime, otherwise composite or possibly composite. determine the prime factors of n−1.

  5. Sieve of Atkin - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Atkin

    The following is pseudocode which combines Atkin's algorithms 3.1, 3.2, and 3.3 [1] by using a combined set s of all the numbers modulo 60 excluding those which are multiples of the prime numbers 2, 3, and 5, as per the algorithms, for a straightforward version of the algorithm that supports optional bit-packing of the wheel; although not specifically mentioned in the referenced paper, this ...

  6. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  7. Sieve of Sundaram - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Sundaram

    The sieve starts with a list of the integers from 1 to n. From this list, all numbers of the form i + j + 2ij are removed, where i and j are positive integers such that 1 ≤ i ≤ j and i + j + 2ij ≤ n. The remaining numbers are doubled and incremented by one, giving a list of the odd prime numbers (that is, all primes except 2) below 2n + 2.

  8. Fermat primality test - Wikipedia

    en.wikipedia.org/wiki/Fermat_primality_test

    The algorithm can be written as follows: Inputs: n: a value to test for primality, n>3; k: a parameter that determines the number of times to test for primality Output: composite if n is composite, otherwise probably prime Repeat k times: Pick a randomly in the range [2, n − 2]

  9. Decision problem - Wikipedia

    en.wikipedia.org/wiki/Decision_problem

    An example of a decision problem is deciding with the help of an algorithm whether a given natural number is prime. Another example is the problem, "given two numbers x and y, does x evenly divide y?" A method for solving a decision problem, given in the form of an algorithm, is called a decision procedure for that problem.