Search results
Results from the WOW.Com Content Network
The phrase replication crisis was coined in the early 2010s [6] as part of a growing awareness of the problem. Considerations of causes and remedies have given rise to a new scientific discipline, metascience, [7] which uses methods of empirical research to examine empirical research practice. [8]
The bacteria solve this by initiating a new round of replication before the previous one has been terminated. [57] The new round of replication will form the chromosome of the cell that is born two generations after the dividing cell. This mechanism creates overlapping replication cycles.
The dimerisation of the replicative polymerases solves the problems related to efficient synchronisation of leading and lagging strand synthesis at the replication fork, but the tight spatial-structural coupling of the replicative polymerases, while solving the difficult issue of synchronisation, creates another challenge: dimerisation of the ...
Gene duplications can arise as products of several types of errors in DNA replication and repair machinery as well as through fortuitous capture by selfish genetic elements. Common sources of gene duplications include ectopic recombination , retrotransposition event, aneuploidy , polyploidy , and replication slippage .
This is known as the end replication problem. [1] The end replication problem is handled in eukaryotic cells by telomere regions and telomerase. Telomeres extend the 3' end of the parental chromosome beyond the 5' end of the daughter strand. This single-stranded DNA structure can act as an origin of replication that recruits telomerase.
Replication of DNA always begins at an origin of replication. In yeast, the origins contain autonomously replicating sequences (ARS), distributed throughout the chromosome about 30 kb from each other. They allow replication of DNA wherever they are placed. Each one is 100-200 bp long, and the A element is one of the most conserved stretches.
The replication of DNA with a broken sugar-phosphate backbone is most likely facilitated by the homologous recombination proteins that confer resistance to ionizing radiation. The activity of PRR enzymes is regulated by the SOS response in bacteria and may be controlled by the postreplication checkpoint response in eukaryotes.
The dispersive hypothesis is exemplified by a model proposed by Max Delbrück, which attempts to solve the problem of unwinding the two strands of the double helix by a mechanism that breaks the DNA backbone every 10 nucleotides or so, untwists the molecule, and attaches the old strand to the end of the newly synthesized one. This would ...