Search results
Results from the WOW.Com Content Network
Liquid phase sintering is a sintering technique that uses a liquid phase to accelerate the interparticle bonding of the solid phase. In addition to rapid initial particle rearrangement due to capillary forces, mass transport through liquid is generally orders of magnitude faster than through solid, enhancing the diffusional mechanisms that drive densification. [1]
Liquid-liquid phase separation (LLPS) is well defined in the Biomolecular condensate page. LLPS databases cover different aspects of LLPS phenomena, ranging from cellular location of the Membraneless Organelles (MLOs) to the role of a particular protein/region forming the condensate state.
Liquid phase sintering is the process of adding an additive to the powder which will melt before the matrix phase. The process of liquid phase sintering has three stages: rearrangement – As the liquid melts capillary action will pull the liquid into pores and also cause grains to rearrange into a more favorable packing arrangement.
Coacervate droplets dispersed in a dilute phase. Coacervate (/ k oʊ ə ˈ s ɜːr v ə t / or / k oʊ ˈ æ s ər v eɪ t /) is an aqueous phase rich in macromolecules such as synthetic polymers, proteins or nucleic acids. It forms through liquid-liquid phase separation (LLPS), leading to a dense phase in thermodynamic equilibrium with a ...
Some of his most important papers and publications are on phase equilibria between intermetallic compounds to the knowledge of peritectic reactions, constitution and properties of cermets, metallography, high-temperature materials, Beryllium and its compounds, liquid phase sintering, particle rearrangement, metallographic etching, toughening of ...
Reverse phase high-performance liquid chromatography (RP-HPLC) involves a non-polar stationary phase, often a hydrocarbon chain, and a polar mobile or liquid phase. The mobile phase generally consists of an aqueous portion with an organic addition, such as methanol or acetonitrile.
The vapor phase enters in the bottom of the column and exits out of the top. Inside of the column are trays or plates. These trays force the liquid to flow back and forth horizontally while the vapor bubbles up through holes in the trays. The purpose of these trays is to increase the amount of contact area between the liquid and vapor phases.
An aqueous sample solution is applied to a grid-mesh and plunge-frozen in liquid ethane or a mixture of liquid ethane and propane. [1] While development of the technique began in the 1970s, recent advances in detector technology and software algorithms have allowed for the determination of biomolecular structures at near-atomic resolution. [ 2 ]