enow.com Web Search

  1. Ads

    related to: how to solve inequality and graph

Search results

  1. Results from the WOW.Com Content Network
  2. Inequality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Inequality_(mathematics)

    For instance, to solve the inequality 4x < 2x + 1 ≤ 3x + 2, it is not possible to isolate x in any one part of the inequality through addition or subtraction. Instead, the inequalities must be solved independently, yielding x < ⁠ 1 / 2 ⁠ and x ≥ −1 respectively, which can be combined into the final solution −1 ≤ x < ⁠ 1 / 2 ⁠.

  3. Crossing number inequality - Wikipedia

    en.wikipedia.org/wiki/Crossing_number_inequality

    The crossing number inequality states that, for an undirected simple graph G with n vertices and e edges such that e > 7n, the crossing number cr(G) obeys the inequality ⁡ (). The constant 29 is the best known to date, and is due to Ackerman. [3]

  4. Christofides algorithm - Wikipedia

    en.wikipedia.org/wiki/Christofides_algorithm

    That is, G is a complete graph on the set V of vertices, and the function w assigns a nonnegative real weight to every edge of G. According to the triangle inequality, for every three vertices u, v, and x, it should be the case that w(uv) + w(vx) ≥ w(ux). Then the algorithm can be described in pseudocode as follows. [1]

  5. Crossing number (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Crossing_number_(graph_theory)

    A drawing of the Heawood graph with three crossings. This is the minimum number of crossings among all drawings of this graph, so the graph has crossing number cr(G) = 3.. In graph theory, the crossing number cr(G) of a graph G is the lowest number of edge crossings of a plane drawing of the graph G.

  6. Linear inequality - Wikipedia

    en.wikipedia.org/wiki/Linear_inequality

    Two-dimensional linear inequalities are expressions in two variables of the form: + < +, where the inequalities may either be strict or not. The solution set of such an inequality can be graphically represented by a half-plane (all the points on one "side" of a fixed line) in the Euclidean plane. [2]

  7. Young's inequality for products - Wikipedia

    en.wikipedia.org/wiki/Young's_inequality_for...

    Proof [2]. Since + =, =. A graph = on the -plane is thus also a graph =. From sketching a visual representation of the integrals of the area between this curve and the axes, and the area in the rectangle bounded by the lines =, =, =, =, and the fact that is always increasing for increasing and vice versa, we can see that upper bounds the area of the rectangle below the curve (with equality ...

  8. Cutting-plane method - Wikipedia

    en.wikipedia.org/wiki/Cutting-plane_method

    The use of cutting planes to solve MILP was introduced by Ralph E. Gomory. Cutting plane methods for MILP work by solving a non-integer linear program, the linear relaxation of the given integer program. The theory of Linear Programming dictates that under mild assumptions (if the linear program has an optimal solution, and if the feasible ...

  9. Jensen's inequality - Wikipedia

    en.wikipedia.org/wiki/Jensen's_inequality

    Jensen's inequality generalizes the statement that a secant line of a convex function lies above its graph. Visualizing convexity and Jensen's inequality. In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function.

  1. Ads

    related to: how to solve inequality and graph