Search results
Results from the WOW.Com Content Network
In aerodynamics, the lift-to-drag ratio (or L/D ratio) is the lift generated by an aerodynamic body such as an aerofoil or aircraft, divided by the aerodynamic drag caused by moving through air. It describes the aerodynamic efficiency under given flight conditions. The L/D ratio for any given body will vary according to these flight conditions.
For conventional fixed-wing aircraft with moderate aspect ratio and sweep, Oswald efficiency number with wing flaps retracted is typically between 0.7 and 0.85. At supersonic speeds, Oswald efficiency number decreases substantially. For example, at Mach 1.2 Oswald efficiency number is likely to be between 0.3 and 0.5. [1]
Spoilers and wings on a vehicle have little effect at low speeds as improper designs may create undesirable responses and lower stability or efficiency for the car at high speeds. [ 3 ] Since "spoiler" is a term describing an application, the operation of a spoiler varies depending on the particular effect it is trying to spoil.
By proper shaping of the car's underside, the air speed there could be increased, lowering the pressure and pulling the car down onto the track. His test vehicles had a Venturi-like channel beneath the cars sealed by flexible side skirts that separated the channel from above-car aerodynamics. He investigated how flow separation on the ...
Aero Warriors, also called aero-cars, is a nickname for four muscle cars developed specifically to race on the NASCAR circuit by Dodge, Plymouth, Ford and Mercury for the 1969 and 1970 racing seasons. [1] The cars were based on production stock cars but had additional aerodynamic features. The first Aero Warrior was the 1969 Ford Torino Talladega.
The Preliminary Research Aerodynamic Design to Lower Drag, or Prandtl-D was a series of unmanned experimental glider-aircraft developed by NASA under aerodynamicist Albion Bowers. [1] The acronym is a reference to early German Aerospace Engineer Ludwig Prandtl , whose theory of the bell-shaped lift distribution deeply influenced Bowers.
Automotive aerodynamics differs from aircraft aerodynamics in several ways: The characteristic shape of a road vehicle is much less streamlined compared to an aircraft. The vehicle operates very close to the ground, rather than in free air. The operating speeds are lower (and aerodynamic drag varies as the square of speed).
It is a better measure of the aerodynamic efficiency of an aircraft than the wing aspect ratio. It is defined as: = where is span and is the wetted surface. Illustrative examples are provided by the Boeing B-47 and Avro Vulcan. Both aircraft have very similar performance although they are radically different.