Search results
Results from the WOW.Com Content Network
For conventional fixed-wing aircraft with moderate aspect ratio and sweep, Oswald efficiency number with wing flaps retracted is typically between 0.7 and 0.85. At supersonic speeds, Oswald efficiency number decreases substantially. For example, at Mach 1.2 Oswald efficiency number is likely to be between 0.3 and 0.5. [1]
In aerodynamics, the lift-to-drag ratio (or L/D ratio) is the lift generated by an aerodynamic body such as an aerofoil or aircraft, divided by the aerodynamic drag caused by moving through air. It describes the aerodynamic efficiency under given flight conditions. The L/D ratio for any given body will vary according to these flight conditions.
Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing has a low aspect ratio. [ 1 ] Aspect ratio and other features of the planform are often used to predict the aerodynamic efficiency of a wing because the lift-to-drag ratio increases with aspect ratio, improving the fuel economy in powered airplanes and the gliding ...
During wind tunnel testing at Imperial College, Frank Dernie recorded that the FW08 had a lift to drag ratio of a remarkable 8:1 - eight parts downforce to just one part drag, giving the FW08 supreme aerodynamic efficiency and giving Keke Rosberg a chance to compete with the far more powerful turbo Renault and Ferrari during the 1982 season ...
In aeronautics, Distributed propulsion is an arrangement in which the propulsive and related air flows are distributed over the aerodynamic surfaces of an aircraft. The purpose is to improve the craft's aerodynamic, propulsive and/or structural efficiency over an equivalent conventional design.
The aerodynamic efficiency of a wing is described by its lift/drag ratio, with a wing giving high lift for little drag being the most efficient. A higher aspect ratio gives a higher lift/drag ratio and so is more efficient.
Also notably the aircraft's shape is formed of a series of 11 flat surfaces, somewhat similar to the body of the F-117 Nighthawk jet strike aircraft in using flat plates, but without separate wing structures. Although aerodynamic efficiency is reduced due to the simplistic shaping, that shaping reduces structural weight, improving payload mass ...
Automotive aerodynamics differs from aircraft aerodynamics in several ways: The characteristic shape of a road vehicle is much less streamlined compared to an aircraft. The vehicle operates very close to the ground, rather than in free air. The operating speeds are lower (and aerodynamic drag varies as the square of speed).