Search results
Results from the WOW.Com Content Network
Tree testing is a usability technique for evaluating the findability of topics in a website. [1] It is also known as reverse card sorting or card-based classification. [2] A large website is typically organized into a hierarchy (a "tree") of topics and subtopics. [3] [4] Tree testing provides a way to measure how well users can find items in ...
The minimum number of test cases is the number of classes in the classification with the most containing classes. In the second step, test cases are composed by selecting exactly one class from every classification of the classification tree. The selection of test cases originally [3] was a manual task to be performed by the test engineer.
Card sorting is a technique in user experience design in which a person tests a group of subject experts or users to generate a dendrogram (category tree) or folksonomy. It is a useful approach for designing information architecture, workflows, menu structure, or web site navigation paths. Card sorting uses a relatively low-tech approach.
A decision tree is a flowchart-like structure in which each internal node represents a "test" on an attribute (e.g. whether a coin flip comes up heads or tails), each branch represents the outcome of the test, and each leaf node represents a class label (decision taken after computing all attributes).
Decision trees used in data mining are of two main types: Classification tree analysis is when the predicted outcome is the class (discrete) to which the data belongs. Regression tree analysis is when the predicted outcome can be considered a real number (e.g. the price of a house, or a patient's length of stay in a hospital).
Decision trees are a popular method for various machine learning tasks. Tree learning is almost "an off-the-shelf procedure for data mining", say Hastie et al., "because it is invariant under scaling and various other transformations of feature values, is robust to inclusion of irrelevant features, and produces inspectable models.
Like other decision trees, CHAID's advantages are that its output is highly visual and easy to interpret. Because it uses multiway splits by default, it needs rather large sample sizes to work effectively, since with small sample sizes the respondent groups can quickly become too small for reliable analysis. [citation needed]
Item tree analysis (ITA) is a data analytical method which allows constructing a hierarchical structure on the items of a questionnaire or test from observed response patterns. Assume that we have a questionnaire with m items and that subjects can answer positive (1) or negative (0) to each of these items, i.e. the items are dichotomous.