enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Drift plus penalty - Wikipedia

    en.wikipedia.org/wiki/Drift_plus_penalty

    This constraint is written in standard form by defining a new penalty function y(t) = a(t) − b(t). The above problem seeks to minimize the time average of an abstract penalty function p'(t)'. This can be used to maximize the time average of some desirable reward function r(t) by defining p(t) = −r('t).

  3. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    For very simple problems, say a function of two variables subject to a single equality constraint, it is most practical to apply the method of substitution. [4] The idea is to substitute the constraint into the objective function to create a composite function that incorporates the effect of the constraint.

  4. Optimal control - Wikipedia

    en.wikipedia.org/wiki/Optimal_control

    Minimize subject to the algebraic constraints = () Depending upon the type of direct method employed, the size of the nonlinear optimization problem can be quite small (e.g., as in a direct shooting or quasilinearization method), moderate (e.g. pseudospectral optimal control [ 11 ] ) or may be quite large (e.g., a direct collocation method [ 12

  5. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). [1] It is named after the mathematician Joseph-Louis ...

  6. Ellipsoid method - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid_method

    In the central-cut ellipsoid method, [1]: 82, 87–94 the cuts are always through the center of the current ellipsoid. The input is a rational number ε >0, a convex body K given by a weak separation oracle , and a number R such that S(0, R ) (the ball of radius R around the origin) contains K .

  7. Quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Quadratic_programming

    Specifically, one seeks to optimize (minimize or maximize) a multivariate quadratic function subject to linear constraints on the variables. Quadratic programming is a type of nonlinear programming. "Programming" in this context refers to a formal procedure for solving mathematical problems.

  8. Frank–Wolfe algorithm - Wikipedia

    en.wikipedia.org/wiki/Frank–Wolfe_algorithm

    A step of the Frank–Wolfe algorithm Initialization: Let , and let be any point in . Step 1. Direction-finding subproblem: Find solving Minimize () Subject to (Interpretation: Minimize the linear approximation of the problem given by the first-order Taylor approximation of around constrained to stay within .)

  9. Duality (optimization) - Wikipedia

    en.wikipedia.org/wiki/Duality_(optimization)

    The goal is to maximize the value of the objective function subject to the constraints. A solution is a vector (a list) of n values that achieves the maximum value for the objective function. In the dual problem, the objective function is a linear combination of the m values that are the limits in the m constraints from the primal problem.