Search results
Results from the WOW.Com Content Network
A Class B push–pull output driver using a pair of complementary PNP and NPN bipolar junction transistors configured as emitter followers. A push–pull amplifier is a type of electronic circuit that uses a pair of active devices that alternately supply current to, or absorb current from, a connected load. This kind of amplifier can enhance ...
A shunt regulated push-pull amplifier is a Class A amplifier whose output drivers (transistors or more commonly vacuum tubes) operate in antiphase. The key design element is the output stage also serves as the phase splitter. The acronym SRPP is also used to describe a series regulated push-pull amplifier.
The Williamson amplifier is a four-stage, push-pull, Class A triode-output valve audio power amplifier designed by D. T. N. Williamson during World War II. The original circuit, published in 1947 and addressed to the worldwide do it yourself community, set the standard of high fidelity sound reproduction and served as a benchmark or reference ...
In push–pull amplifiers and in CMOS, the even harmonics of both transistors just cancel. Experiment shows that a square wave can be generated by those amplifiers. Theoretically square waves consist of odd harmonics only. In a class-D amplifier, the output filter blocks all harmonics; i.e., the harmonics see an open load.
In the example shown, the operational amplifier is used to reduce the distortion of a push-pull pair. Operational amplifiers are differential voltage amplifiers with very high gain (sometimes modeled as infinite gain). In an ideal model, the output of the op amp is held such that both inputs of the op amp must be at exactly the same voltage.
[1] [2] Both circuits drawn to underscore the bridged topology of push-pull operation. The diamond buffer or diamond follower is a four-transistor, two-stage, push-pull, translinear emitter follower, or less commonly source follower, in which the input transistors are folded, or placed upside-down with respect to the output transistors. [3]
For a distributed amplifier the input is fed in series into the amplifiers and parallel out of them. To avoid losses in the input, no input signal is allowed to leak through. This is avoided by using a balanced input and output also known as push–pull amplifier. Then all signals which leak through the parasitic capacitances cancel.
Push–pull power amplifier. The push–pull output circuit shown is a simplified variation of the Williamson topology, which comprises four stages: a SET input stage to buffer the input and give some voltage gain. a phase splitter, usually of the cathodyne or "concertina" type.